Waiting for main navigation ...

High Carbon Amendments Increase Nitrogen Retention in Soil After Slurry Application—an Incubation Study with Silty Loam Soil (2022.0)

Cao X., Reichel R., Wissel H., Kummer S., Brüggemann N.

Journal of Soil Science and Plant Nutrition, 22 (2), 1277-1289

doi:10.1007/s42729-021-00730-7

Abstract

AbstractExcess nitrogen (N) after animal slurry application is a persistent problem of intensive agriculture, with consequences such as environmental pollution by ammonia (NH3) and nitrous oxide (N2O) emissions and nitrate (NO3−) leaching. High-carbon organic soil amendments (HCAs) with a large C:N ratio have shown the potential of mitigating unintended N losses from soil. To reduce gaseous and leaching N losses after the application of slurry, a laboratory incubation study was conducted with silt loam soil. We tested the potential of three different types of HCA—wheat straw, sawdust, and leonardite (application rate 50 g C L−1 slurry for each of the three HCAs)—to mitigate N loss after amendment of soil with pig and cattle slurry using two common application modes (slurry and HCA mixed overnight with subsequent addition to soil vs. sequential addition) at an application rate equivalent to 80 kg N ha−1. Compared to the control with only soil and slurry, the addition of leonardite reduced the NH3 emissions of both slurries by 32–64%. Leonardite also reduced the total N2O emissions by 33–58%. Wheat straw reduced N2O emissions by 40–46%, but had no effect on NH3 emission. 15 N labeling showed that the application of leonardite was associated with the highest N retention in soil (24% average slurry N recovery), followed by wheat straw (20% average slurry N recovery). The mitigation of N loss was also observed for sawdust, although the effect was less consistent compared with leonardite and wheat straw. Mixing the slurry and HCA overnight tended to reduce N losses, although the effect was not consistent across all treatments. In conclusion, leonardite improved soil N retention more effectively than wheat straw and sawdust. inplamint