Waiting for main navigation ...

Functional, not Taxonomic, Composition of Soil Fungi Reestablishes to Pre-mining Initial State After 52 Years of Recultivation (2022.0)

Roy J., Reichel R., Br├╝ggemann N., Rillig M.

Microbial Ecology, (),

doi:10.1007/s00248-022-02058-w

Abstract

Abstract Open-cast mining leads to the loss of naturally developed soils and their ecosystem functions and services. Soil restoration after mining aims to restore the agricultural productivity in which the functions of the fungal community play a crucial role. Whether fungi reach a comparable functional state as in the soil before mining within half a century of recultivation is still unanswered. Here, we characterised the soil fungal community using ITS amplicon Illumina sequencing across a 52-year chronosequence of agricultural recultivation after open-cast mining in northern Europe. Both taxonomic and functional community composition showed profound shifts over time, which could be attributed to the changes in nutrient status, especially phosphorus availability. However, taxonomic composition did not reach the pre-mining state, whereas functional composition did. Importantly, we identified a positive development of arbuscular mycorrhizal root fungal symbionts after the initial three years of alfalfa cultivation, followed by a decline after conversion to conventional farming, with arbuscular mycorrhizal fungi being replaced by soil saprobes. We conclude that appropriate agricultural management can steer the fungal community to its functional pre-mining state despite stochasticity in the reestablishment of soil fungal communities. Nonetheless, conventional agricultural management results in the loss of plant symbionts, favouring non-symbiotic fungi. inplamint