

Impact Area & Indicator Factsheet: Ecosystem Services

Ecosystem Service	Groundwater for non-drinking purposes
CICES class name	Groundwater (and subsurface) used as a material (non-drinking purposes)
CICES Section	Provisioning (Abiotic)
CICES Class code	4.2.2.2

Brief Description

- Sub-surface water that humans use for things other than drinking
- Natural, ground water bodies or aquifers that provide water for that can be used as a material for cooling

Sample Indicators

Indicator values from			
Experiment or direct measurement	B	Survey	
Expert assessment		Statistical- or census data	
Model or GIS	ų,	Literature values	Ш
Stakeholder participation		Not provided	\otimes

Table 1: Field Scale

Indicator	Unit	Indicator values from
^[23] Groundwater replenishment	m ³ * m ⁻² * yr ⁻¹	Щ
^[5, 22] Annual total drainage	mm * yr ⁻¹	Ţ
^[6] Seepage rate: the amount of water that leaves the rooting zone toward the groundwater table	mm * yr ⁻¹	Ţ
^[7] Seepage rate: the amount of water that leaves the rooting zone toward the groundwater table	mm * yr ⁻¹	<u>r</u>

Indicator	Unit	Indicator values from
^[13] Aquifer recharge from irrigation channels: Four-level index based on the share of water lost through seepage in open channel irrigation [%]. The higher the value, the higher the recharge	poor-fair-good- excellent	<u>b</u>
^[13] Aquifer recharge from irrigation channels: Four-level index based on the share of unlined irrigation channels [%]. The higher the value, the higher the recharge	poor-fair-good- excellent	<u>b</u>

Table 3: Regional Scale

Indicator	Unit	Indicator values from
^[1] Groundwater recharge, calculated with the soil-water balance model (SWBM) by the U.S. Geological Survey	mm	Ţ
^[14] Provisioning of water: Groundwater recharge rate calculated from water balance	mm	Ţ
^[2] Groundwater recharge, calculated as: (Precipitation - Evapotranspiration) * (1 - Share of anthropogenic surface sealing) / (Discharge factor). Discharge factor [-] is determined based on distance from the surface to groundwater and slope	mm * yr ⁻¹	Ţ
^[11] Groundwater recharge: mean annual infiltration rate	l * m ⁻²	Ţ
^[19] Groundwater recharge: Share of precipitation not used by evapotranspiration or surface-runoff	%	Ž
^[4, 16] Freshwater supply: Annual groundwater recharge	cm * yr ⁻¹	Þ
^[21] Groundwater recharge rate	mm * ha ⁻¹ * yr ⁻¹	Ĥ
^[9] Groundwater recharge: values for land cover classes. The matrix defined by Burkhard et al., 2012 (DOI:10.1016/j.ecolind.2011.06.019) was adapted and used in this study.	Index 0-5	Þ
^[20] Water yield: calculated as annual precipitation - evapotranspiration	m ³ * area ⁻¹ * yr ⁻¹	Ţ
^[8] Precipitation - Evapotranspiration calculated with InVEST model	1000 m ³	Ţ
^[21] Annual average water yield	mm * yr ⁻¹	Ĥ
^[21] Annual sectoral water yield (e.g., domestic, agriculture and industry	mm * yr ⁻¹	Ĥ

Impact Area & Indicator Factsheet: Ecosystem Services

^[22] Annual total drainage	mm	Ţ
 ^[9] Freshwater supply: values for land cover classes. The matrix defined by Burkhard et al., 2012 (DOI:10.1016/j.ecolind.2011.06.019) was adapted and used in this study. 	Index 0-5	<u>4</u>
^[18] Water for drinking and non-drinking uses: expert-based index for ecosystem service supply by land cover class [1-5], multiplied by the area of the land cover class [km ²]	Index 1-5 * km ²	5, 🗎 È
^[18] Water for drinking and non-drinking uses' value: expert- based index for ecosystem service supply by land cover class [1-5], multiplied by the area of the land cover class [km ²] and a literature-based monetary value of the ecosystem service	\$ * ha ⁻¹ * yr ⁻¹	5, 🕮 🔁
^[3] Water purification and provision: NPP × (1–VCNNP) × ICs × Scf; where NPP: Net Primary Production calculated from NDVI-values and expressed on a relative scale set to (0 - 1000), VCNPP: coefficient of variation of NPP (0 - 1), ICs: soil infiltration capacity (0 - 1), Scf: slope average correction factor of the study area (0 - 1)	-	Ţ
^[21] Leakage of nutrients	kg * ha ⁻¹ * yr ⁻¹	Ĥ
^[21] Total dissolved solids	mg * l ⁻¹	Ĥ
^[17] Runoff: renewable water supply. Values were normalized [0-1] using benchmark values where available and observed values otherwise	mm	\otimes
^[24] Irrigated area	Not provided	<u>íð</u>
^[24] Area irrigated using groundwater	Not provided	áÓ
^[25] Freshwater recharge from the entire landscape	m³/ (km² * year)	\otimes

Table 4: National Scale

Indicator	Unit	Indicator values from
^[15] Groundwater bodies	Not specified	\otimes
^[15] Groundwater abstraction	Not specified	\otimes

Table 5: Multinational Scale

Indicator	Unit	Indicator values from
-----------	------	--------------------------

^[12] Groundwater recharge: Corine land cover classes based on values published by Burkhard et al. (2009; DOI: 10.3097/LO.200915) and modified for the context of riparian zones	Index 0-5	
^[12] Freshwater: Corine land cover classes based on values published by Burkhard et al. (2009; DOI: 10.3097/LO.200915) and modified for the context of riparian zones	Index 0-5	1

References

No.	Citation
1	Meyer MA, Chand T, Priess JA (2015) Comparing Bioenergy Production Sites in the
	Southeastern US Regarding Ecosystem Service Supply and Demand. Plos One 10(3):
	e0116336. DOI: 10.1371/journal.pone.0116336
2	Nordborg M, Sasu-Boakye Y, Cederberg C, Berndes G (2017) Challenges in developing
	regionalized characterization factors in land use impact assessment: impacts on ecosystem
	services in case studies of animal protein production in Sweden. International Journal of Life
	Cycle Assessment 22(3): 328-345. DOI: 10.1007/s11367-016-1158-x
3	Barral MP, Oscar MN (2012) Land-use planning based on ecosystem service assessment: A
	case study in the Southeast Pampas of Argentina. Agriculture Ecosystems & Environment
	154: 34-43. DOI: 10.1016/j.agee.2011.07.010
4	Qiu JX, Turner MG (2015) Importance of landscape heterogeneity in sustaining hydrologic
	ecosystem services in an agricultural watershed. Ecosphere 6(11): 229. DOI: 10.1890/es15-
-	00312.1
5	Syswerda SP, Robertson GP (2014) Ecosystem services along a management gradient in
	Michigan (USA) cropping systems. Agriculture Ecosystems & Environment 189: 28-35. DOI:
6 ^{28*}	10.1016/j.agee.2014.03.006 Tsonkova P, Bohm C, Quinkenstein A, Freese D (2015) Application of partial order ranking to
0	identify enhancement potentials for the provision of selected ecosystem services by
	different land use strategies. Agricultural Systems 135: 112-121. DOI:
	10.1016/j.agsy.2015.01.002
7	Tsonkova P, Quinkenstein A, Bohm C, Freese D, Schaller E (2014) Ecosystem services
·	assessment tool for agroforestry (ESAT-A): An approach to assess selected ecosystem
	services provided by alley cropping systems. Ecological Indicators 45: 285-299. DOI:
	10.1016/j.ecolind.2014.04.024
8	Zarandian A, Baral H, Stork NE, Ling MA, Yavari AR, Jafari HR, Amirnejad H (2017) Modeling
	of ecosystem services informs spatial planning in lands adjacent to the Sarvelat and
	Javaherdasht protected area in northern Iran. Land Use Policy 61: 487-500. DOI:
	10.1016/j.landusepol.2016.12.003
9*	Zhang ZM, Gao JF, Fan XY, Lan Y, Zhao MS (2017) Response of ecosystem services to
	socioeconomic development in the Yangtze River Basin, China. Ecological Indicators 72: 481-
	493. DOI: 10.1016/j.ecolind.2016.08.035
11	Bastian O, Lupp G, Syrbe RU, Steinháußer R (2013) Ecosystem services and energy crops -
	Spatial differentiation of risks. Ekologia Bratislava 32(1): 13-29. DOI: 10.2478/eko-2013-0002
12	Clerici N, Paracchini ML, Maes J (2014) Land-cover change dynamics and insights into
	ecosystem services in European stream riparian zones. Ecohydrology and Hydrobiology
10	14(2): 107-120. DOI: 10.1016/j.ecohyd.2014.01.002
13	Fleming WM, Rivera JA, Miller A, Piccarello M (2014) Ecosystem services of traditional
	irrigation systems in northern New Mexico, USA. International Journal of Biodiversity
	Science, Ecosystem Services and Management 10(4): 343-350. DOI:
14	10.1080/21513732.2014.977953
14	Kay S, Crous-Duran J, Ferreiro-Domínguez N, García de Jalón S, Graves A, Moreno G,
	Mosquera-Losada MR, Palma JHN, Roces-Díaz JV, Santiago-Freijanes JJ, Szerencsits E, Weibel
	R, Herzog F (2018) Spatial similarities between European agroforestry systems and
	ecosystem services at the landscape scale. Agroforestry Systems 92(4): 1075-1089. DOI:
	10.1007/s10457-017-0132-3

 $^{^{\}rm 28*}$ The impact area discussed on this factsheet is not a focus of the cited paper

No.	Citation
15	Maes J, Liquete C, Teller A, Erhard M, Paracchini ML, Barredo JI, Grizzetti B, Cardoso A,
	Somma F, Petersen JE, Meiner A, Gelabert ER, Zal N, Kristensen P, Bastrup-Birk A, Biala K,
	Piroddi C, Egoh B, Degeorges P, Fiorina C, Santos-Martín F, Naruševičius V, Verboven J,
	Pereira HM, Bengtsson J, Gocheva K, Marta-Pedroso C, Snäll T, Estreguil C, San-Miguel-Ayanz
	J, Pérez-Soba M, Grêt-Regamey A, Lillebø AI, Malak DA, Condé S, Moen J, Czúcz B, Drakou
	EG, Zulian G, Lavalle C (2016) An indicator framework for assessing ecosystem services in
	support of the EU Biodiversity Strategy to 2020. Ecosystem Services 17: 14-23. DOI:
	10.1016/j.ecoser.2015.10.023
16	Qiu J, Wardropper CB, Rissman AR, Turner MG (2017) Spatial fit between water quality
	policies and hydrologic ecosystem services in an urbanizing agricultural landscape.
	Landscape Ecology 32(1): 59-75. DOI: 10.1007/s10980-016-0428-0
17	Rodríguez-Loinaz G, Alday JG, Onaindia M (2014) Multiple ecosystem services landscape
	index: A tool for multifunctional landscapes conservation. Journal of Environmental
	Management 147: 152-163. DOI: 10.1016/j.jenvman.2014.09.001
18	Huq N, Bruns A, Ribbe L (2019) Interactions between freshwater ecosystem services and
	land cover changes in southern Bangladesh: A perspective from short-term (seasonal) and
	long-term (1973-2014) scale. Science of the Total Environment 650: 132-143. DOI:
	10.1016/j.scitotenv.2018.08.430
19	Kay S, Crous-Duran J, García de Jalón S, Graves A, Palma JHN, Roces-Díaz JV, Szerencsits E,
	Weibel R, Herzog F (2018) Landscape-scale modelling of agroforestry ecosystems services in
	Swiss orchards: a methodological approach. Landscape Ecology 33(9): 1633-1644. DOI:
	10.1007/s10980-018-0691-3
20	Peng J, Tian L, Liu Y, Zhao M, Hu Y, Wu J (2017) Ecosystem services response to urbanization
	in metropolitan areas: Thresholds identification. Science of the Total Environment 607-608:
	706-714. DOI: 10.1016/j.scitotenv.2017.06.218
21	Phama HV, Torresan S, Critto A, Marcomini A (2019) Alteration of freshwater ecosystem
	services under global change - A review focusing on the Po River basin (Italy) and the Red
	River basin (Vietnam). Science of the Total Environment 652: 1347-1365. DOI:
	10.1016/j.scitotenv.2018.10.303
22	Qiu JX, Carpenter SR, Booth EG, Motew M, Zipper SC, Kucharik CJ, Loheide SP, Turner AG
	(2018) Understanding relationships among ecosystem services across spatial scales and over
	time. Environmental Research Letters 13(5): 054020. DOI: 10.1088/1748-9326/aabb87
23*	Tang LL, Hayashi K, Kohyama K, Leon A (2018) Reconciling Life Cycle Environmental Impacts
	with Ecosystem Services: A Management Perspective on Agricultural Land Use. Sustainability
	10(3): 630. DOI: 10.3390/su10030630
24	Chatzinikolaou P, Viaggi D, Raggi M (2018) Using the Ecosystem Services Framework for
	Policy Impact Analysis: An Application to the Assessment of the Common Agricultural Policy
	2014-2020 in the Province of Ferrara (Italy). Sustainability 10: 890. DOI:
	10.3390/su10030890.
25	Gasparatos A, Romeu-Dalmau C, von Maltitz GP, Johnson FX, Shackleton C, Jarzebski MP,
	Jumbe C, Ochieng C, Mudombi S, Nyambane A, Willis K (2018) Mechanisms and indicators
	for assessing the impact of biofuel feedstock production on ecosystem services. Biomass &
	Bioenergy 114: 157-173. DOI: 10.1016/j.biombioe.2018.01.024