

Impact Area & Indicator Factsheet: Ecosystem Services

Ecosystem Service	Surface water for drinking
CICES class name	Surface water for drinking
CICES Section	Provisioning (Abiotic)
CICES Class code	4.2.1.1

Brief Description

- Drinking water from aboveground sources
- Natural, surface water bodies that provide a source of drinking water

Sample Indicators

Indicator values from			
Experiment or direct measurement	B	Survey	
Expert assessment		Statistical- or census data	
Model or GIS	ĥ	Literature values	
Stakeholder participation		Not provided	\otimes

Table 1: Field Scale

Indicator	Unit	Indicator values from
^[1] Annual total drainage	mm	Ţ

Table 2: Farm Scale

Indicator	Unit	Indicator values from
^[2] Mean annual water flow	m ³ * s ⁻¹ * ha ⁻¹	ار
^[3] Streamflow calculated by SWAT model	m ³ * time ⁻¹	Ţ
^[3] Surface runoff calculated by application of ECOSER protocol (www.eco-ser.com.ar)	m ³ * ha ⁻¹	Ţ

Table 3: Regional Scale

Indicator	Unit	Indicator values from
-----------	------	--------------------------

Impact Area & Indicator Factsheet: Ecosystem Services

^[1] Annual total drainage	mm	Ţ
^[5, 12] Precipitation – evapotranspiration, calculated with InVEST model)	m ³ * ha ⁻¹ * yr ⁻¹	Ţ
^[7] Surface water yield: mean annual precipitation - mean annual evapotranspiration; calculated with InVEST model.	mm	Ţ
^[13] Water yield: calculated as annual precipitation - evapotranspiration	m ³ * area ⁻¹ * yr ⁻¹	Ţ
^[11] Potential water yield, calculated as precipitation - evapotranspiration	mm	m, É
^[16] Provisioning of water: Groundwater recharge rate calculated from water balance	mm	Ţ
^[14] Annual average water yield	mm * yr ⁻¹	Ĥ
^[14] Annual sectoral water yield (e.g., domestic, agriculture and industry	mm * yr ⁻¹	Ĥ
^[8] Runoff: renewable water supply. Values were normalized [0-1] using benchmark values where available and observed values otherwise.	mm	\otimes
^[14] Annual river runoff	m ³ * yr ⁻¹	Ĥ
^[15] Annual water flow that is available from surface waters	mm * yr ⁻¹ , m ³ * yr ⁻¹	Ţ
^[14] Water level	m	Ĥ
^[14] Number of extreme (runoff) events	# * yr ⁻¹	Ĥ
^[14] Annual average sediment in rivers	t * yr ⁻¹	<u>m</u>
^[14] Total dissolved solids	mg * l ⁻¹	Щ.
^[14] Leakage of nutrients	kg * ha ⁻¹ * yr ⁻¹	Ĥ
^[9] Surface area of water bodies	ha	5 🖉 🔁
^[9] Number of traditional water sources	#	50 🗟 🗹
^[6] Freshwater supply: values for land cover classes. The matrix by Burkhard et al., 2012 (DOI:10.1016/j.ecolind.2011.06.019) was adapted and used in this study.		Ţ
^[10] Water for drinking and non-drinking uses: expert-based index for ecosystem service supply by land cover class [1-5], multiplied by the area of the land cover class	km ²	5 🗓 🔁
^[10] Water for drinking and non-drinking uses' value: expert- based index for ecosystem service supply by land cover class [1-5], multiplied by the area of the land cover class and a literature-based monetary value of ES	km ² , \$ * ha ⁻¹ * yr ⁻	₽, Щ, Ţ₽
^[11] Rating of current service supply per land use class by expert-stakeholders	Rating 0 - 10	m, É
^[11] Rating of increases/decreases of service provision in scenarios, relative to the status quo	%	m, É
^[17] Water purification and provision: $W = NPP * (1 - VCNPP) * IC_s * S_{cf} * 1.75$		<u>I</u>

With: W – water purification and provision, NPP – Net Primary Production [0-1000], VCNPP – coefficient of variation of NPP [0–1], IC _s – soil infiltration capacity [0–1], S _{cf} – "slope average" correction factor of the study area [0–1]		
^[21] Freshwater recharge from the entire landscape	m ³ / (km ² * year)	\otimes

Table 4: National Scale

Indicator	Unit	Indicator values from
^[18] Supply and demand of drinking water, calculated by multiplying modelled average surface water runoff by the number of people living downstream and the average estimated domestic water use	m ³ * yr ⁻¹	<u>r</u>
^[19] High Nature Value farmland	Not specified	<u>áð</u>

Table 5: Multinational Scale

Indicator	Unit	Indicator values from
^[20] Freshwater: values for Corine land cover classes based on values published by Burkhard et al. (2009; DOI: 10.3097/LO.200915) and modified for the context of riparian zones.	Index 0 - 5	-

References

No.	Citation
1	Qiu JX, Carpenter SR, Booth EG, Motew M, Zipper SC, Kucharik CJ, Loheide SP, Turner AG
	(2018) Understanding relationships among ecosystem services across spatial scales and over
	time. Environmental Research Letters 13(5): 054020. DOI: 10.1088/1748-9326/aabb87
2	Andersson E, Nykvist B, Malinga R, Jaramillo F, Lindborg R (2015) A social–ecological analysis
	of ecosystem services in two different farming systems. Ambio 44(1): 102-112. DOI:
	10.1007/s13280-014-0603-y
3	Nahuelhual L, Benra F, Laterra P, Marin S, Arriagada R, Jullian C (2018) Patterns of ecosystem
	services supply across farm properties: Implications for ecosystem services-based policy
	incentives. Science of the Total Environment 634: 941-950. DOI:
	10.1016/j.scitotenv.2018.04.042
4	Palomo I, Martin-Lopez B, Zorrilla-Miras P, Del Amo DG, Montes C (2014) Deliberative
	mapping of ecosystem services within and around Donana National Park (SW Spain) in
	relation to land use change. Regional Environmental Change 14(1): 237-251. DOI:
	10.1007/s10113-013-0488-5
5	Zarandian A, Baral H, Stork NE, Ling MA, Yavari AR, Jafari HR, Amirnejad H (2017) Modeling
	of ecosystem services informs spatial planning in lands adjacent to the Sarvelat and
	Javaherdasht protected area in northern Iran. Land Use Policy 61: 487-500. DOI:
	10.1016/j.landusepol.2016.12.003

No.	Citation
6 ²⁵	Zhang ZM, Gao JF, Fan XY, Lan Y, Zhao MS (2017) Response of ecosystem services to
*	socioeconomic development in the Yangtze River Basin, China. Ecological Indicators 72: 481-
	493. DOI: 10.1016/j.ecolind.2016.08.035
7	Früh-Müller A, Hotes S, Breuer L, Wolters V, Koellner T (2016) Regional patterns of
	ecosystem services in cultural landscapes. Land 5(2): 17. DOI: 10.3390/land5020017
8	Rodríguez-Loinaz G, Alday JG, Onaindia M (2015) Multiple ecosystem services landscape
	index: A tool for multifunctional landscapes conservation. Journal of Environmental
	Management 147: 152-163. DOI: 10.1016/j.jenvman.2014.09.001
9	Adhikari S, Baral H, Nitschke CR (2018) Identification, Prioritization and Mapping of
	Ecosystem Services in the Panchase Mountain Ecological Region of Western Nepal. Forests
	9(9): 554. DOI: 10.3390/f9090554
10	Huq N, Bruns A, Ribbe L (2019) Interactions between freshwater ecosystem services and land
	cover changes in southern Bangladesh: A perspective from short-term (seasonal) and long-
	term (1973-2014) scale. Science of the Total Environment 650: 132-143. DOI:
	10.1016/j.scitotenv.2018.08.430
11	Koo H, Kleemann J, Fürst C (2018) Land use scenario modeling based on local knowledge for
	the provision of ecosystem services in northern Ghana. Land 7(2): 59. DOI:
	10.3390/land7020059
12	Li T, Lü Y, Fu B, Hu W, Comber AJ (2019) Bundling ecosystem services for detecting their
	interactions driven by large-scale vegetation restoration: enhanced services while depressed
	synergies. Ecological Indicators 99: 332-342. DOI: 10.1016/j.ecolind.2018.12.041
13	Peng J, Tian L, Liu Y, Zhao M, Hu Y, Wu J (2017) Ecosystem services response to urbanization
	in metropolitan areas: Thresholds identification. Science of the Total Environment 607-608:
	706-714. DOI: 10.1016/j.scitotenv.2017.06.218
14	Pham HV, Torresan S, Critto A, Marcomini A (2019) Alteration of freshwater ecosystem
	services under global change - A review focusing on the Po River basin (Italy) and the Red
	River basin (Vietnam). Science of the Total Environment 652: 1347-1365. DOI:
45	10.1016/j.scitotenv.2018.10.303
15	Santos-Martín F, Zorrilla-Miras P, Palomo-Ruiz I, Montes C, Benayas J, Maes J (2019)
	Protecting nature is necessary but not sufficient for conserving ecosystem services: A
	comprehensive assessment along a gradient of land-use intensity in Spain. Ecosystem
16	Services 35: 43-51. DOI: 10.1016/j.ecoser.2018.11.006 Kay S, Crous-Duran J, Ferreiro-Domínguez N, García de Jalón S, Graves A, Moreno G,
10	Mosquera-Losada MR, Palma JHN, Roces-Díaz JV, Santiago-Freijanes JJ, Szerencsits E, Weibel
	R, Herzog F (2018) Spatial similarities between European agroforestry systems and
	ecosystem services at the landscape scale. Agroforestry Systems 92(4): 1075-1089. DOI:
	10.1007/s10457-017-0132-3
17	Barral MP, Oscar MN (2012) Land-use planning based on ecosystem service assessment: A
1,	case study in the Southeast Pampas of Argentina. Agriculture, Ecosystems and Environment
	154: 34-43. DOI: 10.1016/j.agee.2011.07.010
18	Neugarten RA, Honzak M, Carret P, Koenig K, Andriamaro L, Cano CA, Grantham HS, Hole D,
10	Juhn D, McKinnon M, Rasolohery A, Steininger M, Wright TM, Turner WR (2016) Rapid
	Assessment of Ecosystem Service Co-Benefits of Biodiversity Priority Areas in Madagascar.
	PLoS One 11(12): e0168575. DOI: 10.1371/journal.pone.0168575
19	Maes J, Liquete C, Teller A, Erhard M, Paracchini ML, Barredo JI, Grizzetti B, Cardoso A,
	Somma F, Petersen JE, Meiner A, Gelabert ER, Zal N, Kristensen P, Bastrup-Birk A, Biala K,
L	

 $^{^{\}rm 25*}$ The impact area discussed on this factsheet is not a focus of the cited paper

No.	Citation
	Piroddi C, Egoh B, Degeorges P, Fiorina C, Santos-Martín F, Naruševičius V, Verboven J,
	Pereira HM, Bengtsson J, Gocheva K, Marta-Pedroso C, Snäll T, Estreguil C, San-Miguel-Ayanz
	J, Pérez-Soba M, Grêt-Regamey A, Lillebø AI, Malak DA, Condé S, Moen J, Czúcz B, Drakou
	EG, Zulian G, Lavalle C (2016) An indicator framework for assessing ecosystem services in
	support of the EU Biodiversity Strategy to 2020. Ecosystem Services 17: 14-23. DOI:
	10.1016/j.ecoser.2015.10.023
20	Clerici N, Paracchini ML, Maes J (2014) Land-cover change dynamics and insights into
	ecosystem services in European stream riparian zones. Ecohydrology and Hydrobiology
	14(2): 107-120. DOI: 10.1016/j.ecohyd.2014.01.002
21	Gasparatos A, Romeu-Dalmau C, von Maltitz GP, Johnson FX, Shackleton C, Jarzebski MP,
	Jumbe C, Ochieng C, Mudombi S, Nyambane A, Willis K (2018) Mechanisms and indicators for
	assessing the impact of biofuel feedstock production on ecosystem services. Biomass &
	Bioenergy 114: 157-173. DOI: 10.1016/j.biombioe.2018.01.024