

Ecosystem Service	Soil quality by decomposition and fixing	
	processes	
CICES class name	Decomposition and fixing processes and their effect on soil quality	
CICES Section	Regulation & Maintenance (Biotic)	
CICES Class code	2.2.4.2	

Brief Description

- Ensuring that organic matter in our soils is maintained
- Decomposition of biological materials and the incorporation of the contained carbon and nutrients into the soils

Sample Indicators

Indicator values from			
Experiment or direct measurement	J.	Survey	 ===<
Expert assessment	.	Statistical- or census data	
Model or GIS	Ł	Literature values	
Stakeholder participation		Not provided	\oslash

Table 1: Field Scale

Indicator	Unit	Indicator values from
^[1] Nutrient cycling: -pH	Not provided	0
-Cation exchange capacity -Water-filled pore space		\otimes
 C cycling: Soil organic carbon -KMnO₄ oxidizable C -Beta-glucosidase activity -Metabolic CO₂ quotient 	Not provided	\otimes
^[2] Soil organic carbon depletion	kg C * ha ⁻¹ * yr ⁻¹	
 ^[1] N cycle: -Total nitrogen -Potentially mineralizable nitrogen 	Not provided	\otimes

	1	
-Leucine aminopeptidase activity -N-acetyl glucosamine activity		
^[3] Biological nitrogen fixation	kg N * ha ⁻¹ * yr ⁻¹	-
 P cycle: -Available inorganic P -Alkaline phosphomonoesterase activity -Phosphodiesterase activity 	Not provided	\otimes
^[4, 20] Soil organic carbon in topsoil (0-20cm)	g * kg ⁻¹	A
^[6] Soil organic carbon (0-20 cm), calculated from loss on ignition	%	A
^[5] Carbon stocks in soil biomass (0-30 cm)	Mg * ha ⁻¹	B
^[7] Soil organic carbon stock over a 2.5 m deep soil profile	kg * ha⁻¹	<u>ل</u>
^[12] Total soil organic carbon (0-20 cm, 20-60 cm)	g * kg ⁻¹	B
^[12] Soil carbon stock in 0 -20 and 20 – 60 cm depth	Mg * ha ⁻¹	B
^[14] Soil organic carbon concentration in top soil (0-5 cm) and rooting layer (5-60 cm)	%, g * g ⁻¹	
^[14] Soil organic carbon stock in top soil (0-5 cm) and rooting layer (5-60 cm)	kg * ha ⁻¹	
^[17] Soil carbon (0-100cm)	kg C * m ⁻²	B
^[18] Carbon stock in soil: organic C contained in topsoil (0–30 cm) after 20 years of management	t * ha ⁻¹	<u></u>
^[19] Carbon stock in soil: organic C contained in topsoil (0–30 cm) after 20 years of management	t * ha ⁻¹	<u>4</u>
^[21] C _{tot} : Total carbon content in soil sample (0-7.5 cm), measured as weight loss on ignition	%	B
$^{[21]}C_{org}$: Organic carbon content in soil sample (0-7.5 cm,) measured by wet combustion (Cr ₂ O ₇ oxidation) and colorimetric analysis	%	B
^[21] C _{labile} : Labile carbon content in soil sample (0-7.5 cm), measured by oxidation with 333 mM KMnO ₄ and spectral analysis at 565 nm	%	B
^[21] CMI: Carbon management index, calculated as:	Index 0 - 100	B

$CMI = \frac{C_{totagr}}{C_{totnat}} * \frac{C_{labileagr}}{C_{non-labileagr}} * \frac{100}{\frac{C_{labilenat}}{C_{non-labilenat}}}$		
With: $C_{totagr} - C_{tot}$ in agricultural site, $C_{totnat} - C_{tot}$ under native vegetation, $C_{labileagr} - C_{labile}$ inagricultural site, $C_{non-labileagr} - C_{non-labile}$ in agricultural site, $C_{labilenat} - C_{labile}$ under native vegetation, $C_{non-labilenat} - C_{non-labile}$ under native vegetation		
^[21] LCMI: Landscape carbon management index, calculated as:	-	
$LCMI = CMI_{nat} * S_{nat} + CMI_{grass} * S_{grass} + CMI_{crop} \\ * S_{crop}$		A
With: $CMI_{nat} - CMI$ (native vegetation), $S_{nat} - share of native vegetation in landscape, CMI_{grass} - CMI (grassland), S_{grass} - share of grassland in the landscape, CMI_{crop} - CMI (cropland), S_{crop} - share of cropland in the landscape$		<u></u>
^[13] Litter cover	cm	
^[13] Biological soil cover	cm	Û
^[12] Soil carbon/nitrogen ratio (0-20cm)	-	B
^[17] C/N ratio in soil (0-100 cm)	-	<u>B</u>
^[4] TN - total nitrogen in topsoil (0-20cm)	g * kg ⁻¹	B
^[4] Net N mineralisation	mg * kg ⁻¹	B
^[6] Total N content in soil samples (0-20 cm), calculated from dry combustion data	%	B
^[7] Nitrogen mineralization	kg TN * ha ⁻¹ *yr ⁻¹	ر ً
^[20] Net N mineralisation	mg * kg ⁻¹	B
^[8] Soil nitrogen availability: Soil organic nitrogen variation	kg N * ha ⁻¹ * yr ⁻¹	$O_{,}$
^[8] Soil nitrogen availability: Mean, maximal and minimal soil nitrate concentration over a time period	mg NO ₃ -N * kg dry soil ⁻¹	$O_{,}$

^[12] Total nitrogen in soil (0-20 cm, 20-60 cm)	g * kg ⁻¹	B
^[14] Soil total nitrogen concentration in top soil (0-5 cm) and rooting layer (5-60 cm)	%, g * g ⁻¹	
^[14] Soil total nitrogen stock in top soil (0-5 cm) and rooting layer (5-60 cm)	kg * ha ⁻¹	
^[15] Amount of organic nitrogen stocked or destocked within the soil	kg N * ha ⁻¹ * yr ⁻¹	٩
^[15] Mean nitrate concentration in topsoil (0–30 cm)	mg NO ₃ N * kg dm ⁻¹	Ţ
^[17] Nitrate leaching	kg NO3 N * ha ⁻¹ * уг ⁻¹	B
^[19] Nitrate concentration in seepage water	mg * ⁻¹ * yr ⁻¹	Ţ
^[18] Nutrient use efficiency (N): Total harvested biomass in dry matter (DM) produced per unit of nutrient assimilated	kg * kg biomass ⁻¹	Ţ
^[20] TN - total nitrogen in topsoil (0-20cm)	g * kg ⁻¹	B
^[4] Plant available phosphorus in topsoil (0-20cm): Bray P	mg * kg ⁻¹	B
^[6] Soil phosphorous content (0-20 cm), calculated from acetate extraction & ICP data	mg P * kg soil ⁻¹	B
^[14] Soil total phosphorus concentration in top soil (0-5 cm) and rooting layer (5-60 cm)	%, g * g ⁻¹	
^[14] Soil total phosphorus stock in top soil (0-5 cm) and rooting layer (5-60 cm)	kg * ha ⁻¹	
^[18] Nutrient use efficiency (P): Total harvested biomass in dry matter (DM) produced per unit of nutrient assimilated	kg * kg biomass ⁻¹	ير. ۲
^[19] Nutrient use efficiency (N & P): Total harvested biomass in dry matter (DM) produced per unit of nutrient assimilated	kg * kg biomass ⁻¹	ر
^[19] Phosphorus loss - particulate	kg * ha ⁻¹ * yr ⁻¹	<u>ل</u> م
^[20] Plant available phosphorus in topsoil (0-20cm): Bray P	mg * kg ⁻¹	B

^[6] Soil potassium content (0-20 cm), calculated from acetate extraction & ICP data	mg P * kg soil ⁻¹	B
^[12] Soil cation exchange capacity (CEC)	cmol * kg ⁻¹	B
^[12] Exchangeable Ca, Mg, K and Na	cmol * kg ⁻¹	B
^[4,20] pH in topsoil (0-20cm)	-	B
^[6] Soil pH (water)	-	B
^[12] pH (soil:water = 1:5)	-	B
^[12] Total equivalent CaCO ₃	%	B
^[12] Electrical conductivity (soil:water = 1:5)	mS * cm ⁻¹	B
^[5] Indicator of chemical soil quality in topsoil (0-10 cm), based on pH H ₂ O; CEC; exchangeable K ⁺ , Ca ²⁺ , Mg ²⁺ , Al ³⁺ & NH ₄ ⁺ and extractable phosphorus concentrations	0.1 - 1	B
^[13] Soil nutrients (0–10 cm)	kg * ha ⁻¹	
 ^[9] Soil composition: -pH (in H₂O) -total soil organic matter (SOM) [%] -available phosphorus (P) [mg * kg⁻¹] -potassium (K) [mg * kg⁻¹] -calcium (Ca) [cmolc * kg⁻¹] -magnesium (Mg) [cmolc * kg⁻¹] using the Mehlich-3 method -bulk density [g * cm⁻³] 	-	B
 ^[10] Chemical soil fertility indicator based on a principal component analysis (PCA) of 20 variables evaluated at 0–10 cm and 10–20 cm. Variables included: -C and N contents -Cation exchange capacity (CEC) -Al saturation -Concentrations of Ca, K, Mg, P Bray II, Al, B, Fe, Mn, Cu, Zn -Soil pH measured in 2:1 water solution 	Index 0.1 - 1.0	B
Variables with significant contribution (>50 % of the maximum value) to either of the first two principal component axes were selected and their contribution to PCA axes 1 and 2 multiplied by the overall variability explained by each PCA		

axis. These weighted factors were summed up and scaled to a range of 0.1 - 1.0.		
^[12] Decomposition rate of commercially available tea bags (weight loss)	g * d ⁻¹	<u>A</u>
^[12] Decomposition rate of commercially available tea bags (stabilization factor); factor associated with labile compounds that become recalcitrant and do not decompose.	Range 0 - 1	<u>A</u>
^[4] Microbial biomass of bacteria and fungi in topsoil (0-20cm), based on characterization by extracted phospholipid fatty acids (PLFAs)	mg C * g ⁻¹	A
^[6] Biomass of bacteria, saprophytic fungi and arbuscular mycorrhizal fungi (0-20 cm), calculated from phospho- and neutral lipid fatty acid analysis data (PLFA, NLFA) data	nmol * g soil ⁻¹	A
^[20] Microbial biomass of bacteria and fungi in topsoil (0-20cm), based on characterization by extracted phospholipid fatty acids (PLFAs)	mg C * g ⁻¹	
 ^[12] Enzyme activity: soil analysis for -N-acetyl-β-glucosaminidase (NAG) -β-glucosidase (β-G) -butyrate esterase (BUT) -acid phosphatase (AP) -arylsulphatase (ARYL) -β-xylosidase (XYL) -cellulose (CELL) -acetate esterase (AC) activity 	kat	B
^[12] Sum of soil enzyme activity: sum of the percentage of the maximum value found for a specific enzymatic response across all enzymes investigated	-	A
^[11] Indicator value calculated as: $I = \frac{\sum log(\frac{i}{lmax}) }{n}$ With: i - variable I measured, i _{max} - maximum ecological potential of variable I in benchmark reference, n - number of variables. Where performance is considered better than in the benchmark and deviation, therefore, has a positive effect, $ log(\frac{i}{lmax}) $ is subtracted from the sum instead of added. a) with a focus on "nutrient retention and release", variables for this ecosystem service were: -Soil organic matter [% dw] -Earthworm abundance [number * m ⁻²] -pH in KCl -Potential C mineralization [mg C * kg soil ⁻¹ * week ⁻¹]		A, D

-Potential N mineralization [mg N * kg soil ⁻¹ * week ⁻¹] -Water-soluble P (Pw) and extractable P (PAL)		
 b) with a focus on "fragmentation and mineralization of soil organic matter ", variables for this ecosystem service were: -Soil organic matter [% dw] -Earthworm abundance [# * m⁻¹] -Bacterial biomass [mg C * g dw⁻¹] -Physiological diversity bacteria [biolog. CLPP: Hill's slope] -Potential C mineralization [mg C * kg soil⁻¹ * week⁻¹] -Potential N mineralization [mg N * kg soil⁻¹ *week⁻¹] 		
 ^[16] Soil fertility, indicated by high organic matter, low bulk density, high soil nutrient contents: -Soil organic matter [%] -Bulk density [g * cm⁻³] -Percent weight of C [%] -Percent weight of N [%] -C:N Ratio [-] 		B
^[42] SOC in top soil (0–20 cm) at the end of a 30-year simulation period	Mg of carbon / hectare	<u></u>

Table 2: Farm Scale

Indicator	Unit	Indicator values from
^[22] Topsoil carbon stock: calculated from bulk density and total C content at 0–10, 10–20, and 20–30 cm depths	Mg C * ha ⁻¹	
^[22] Soil chemical quality index based on exchangeable Ca ²⁺ , Mg^{2+} , K^+ , Al^{3+} and NH_4^+ , and extractable P contents at a 0–10 cm depth	0.1 - 1	B
^[24] Index of soil quality BISQ (richness; structure; function)	Not provided	\otimes
^[23] Vegetation diversity: four-level index based on the number of plant species	poor-fair-good- excellent	B
^[24] Earthworm biomass and diversity	g * m ⁻² , species # * m ⁻²	\otimes

Table 3: Regional Scale

Indicator	Unit	Indicator values from
^[26] Soil organic carbon stock (30 cm)	t C * ha ⁻¹	<u>áÓĺ</u>

^[28] Soil organic carbon content (0-30 cm)	%	<u>\$</u> , ₽
^[30] Soil organic carbon stock	t C * ha ⁻¹	\otimes
^[35] Soil organic carbon content	g * kg ⁻¹	
^[27] Organic matter layer thickness in topsoil (0-10cm)	cm	B
^[27] Organic matter content in topsoil (0-10 cm)	% Weight	<u>B</u>
^[33] Topsoil organic carbon content	%	<u>س</u>
^[36] Carbon storage in aboveground, belowground, soil, and dead organic carbon, calculated with InVEST model based on land use/land cover information	Mg * ha ⁻¹	<u></u>
^[37] Soil carbon stock	kg C * ha ⁻¹	
^[23] C _{tot} : Total carbon content in soil sample (0-7.5 cm), measured as weight loss on ignition	%	B
^[23] C _{org} : Organic carbon content in soil sample (0-7.5 cm,) measured by wet combustion (Cr ₂ O ₇ oxidation) and colorimetric analysis	%	B
^[23] C _{labile} : Labile carbon content in soil sample (0-7.5 cm), measured by oxidation with 333 mM KMnO ₄ and spectral analysis at 565 nm	%	B
^[23] CMI: Carbon management index, calculated as: $CMI = \frac{C_{totagr}}{C_{totnat}} * \frac{C_{labileagr}}{C_{non-labileagr}} * \frac{100}{\frac{C_{labilenat}}{C_{non-labilenat}}}$		B
With: $C_{totagr} - C_{tot}$ in agricultural site, $C_{totnat} - C_{tot}$ under native vegetation, $C_{labileagr} - C_{labile}$ inagricultural site, $C_{non-labileagr} - C_{non-labile}$ in agricultural site, $C_{labilenat} - C_{labile}$ under native vegetation, $C_{non-labilenat} - C_{non-labile}$ under native vegetation		
^[23] LCMI: Landscape carbon management index, calculated as: $LCMI = CMI_{nat} * S_{nat} + CMI_{grass} * S_{grass} + CMI_{crop}$ $* S_{crop}$		B
With: CMI _{nat} – CMI (native vegetation), S _{nat} – share of native vegetation in landscape, CMI _{grass} – CMI (grassland), S _{grass} –		

share of grassland in the landscape, CMI _{crop} – CMI (cropland),		
S _{crop} – share of cropland in the landscape		
^[34] Nitrogen loss	kt N	<u> </u>
^[35] Total nitrogen content	g * kg ⁻¹	
^[35] Total phosphorus content	mg * g ⁻¹	
^[25] Total "Emergy" of the amounts of nitrogen, potassium and phosphorus in the soil	seJ	<u>áÓ</u>
^[35] pH	-	
^[29] Soil chemical fertility index. The index is based on the parameters: pH, SOM, total N, available P, Al saturation, cation exchange capacity, and macronutrient concentrations at the 0–10 cm and 10–20 cm depths.	0.1 - 1	B
^[32] Maintenance of soil fertility: expert based index for ecosystem service provision by land cover class [1-5], multiplied by the area of the land cover class	km ²	₽, <u>,</u> <u>,</u> <u></u>
^[32] Maintenance of soil fertility value: expert based index for ecosystem service provision by land cover class [1-5]. multiplied by the area of the land cover class and a literature- based monetary value of the ecosystem service	\$ * ha ⁻¹ * yr ⁻¹	₽ <u>,</u> □, ₽
^[24] Index of soil quality BISQ (richness; structure; function)	Not provided	\otimes
^[31] Natural soil production capacity: (for historic analyses in Germany) Prussian Taxation soil production capacity index	1 - 8	₽, <u>á</u> ĺ
^[31] Natural soil production capacity: (for Germany) German soil inventory production potential index (for historical analyses); index value represents the percentage of potential yield relative to most productive soils in Germany.	1 - 100	ு _, <u>வ</u> ீ
^[29] Bio-indicator: Presence of specific ant species is used as an indicator for high, medium or low provision of this ES. Suitable indicator species must first be identified by a correlation between presence of species and ecosystem service provision.	low-medium- high	B
^[24] Earthworm biomass and diversity	g * m ⁻² , species # * m ⁻²	\otimes

Table 4: National Scale

Indicator	Unit	Indicator values from
^[39] Soil organic carbon in topsoil layer	t	<u>ح</u>
^[38] Soil fertility: Expert assessment for each land use class based on chemical (e.g., N, P, K, Ca), physical (e.g., aggregate stability; bulk density; percolation stability), and biological (e.g., mycorrhizae; microbial biomass; earthworm biomass) indicators	very negative (–3) to very positive (+3)	2 -
^[40] Area of N fixing crops	ha, m²	۵ÓÍ
^[24] Index of soil quality BISQ (richness; structure; function)	Not provided	\otimes
^[24] Earthworm biomass and diversity	g * m ⁻² , species # * m ⁻²	\otimes

Table 5: Multinational Scale

Indicator	Unit	Indicator values from
^[41] Nutrient regulation: Index values for Corine land cover classes, based on values published by Burkhard et al. (2009; DOI: 10.3097/LO.200915) and modified for the context of riparian zones.	Index 0 - 5	.
^[24] Index of soil quality BISQ (richness; structure; function)	Not provided	\otimes
^[24] Earthworm biomass and diversity	g * m ⁻² , species # * m ⁻²	\otimes

Table 6: Global Scale

Indicator	Unit	Indicator values from
^[24] Index of soil quality BISQ (richness; structure; function)	Not provided	\otimes
^[24] Earthworm biomass and diversity	g * m ⁻² , species # * m ⁻²	\otimes

References

No.	Citation
1 ^{12*}	Ferrarini A, Bini C, Amaducci S (2017) Soil and ecosystem services: Current knowledge and
	evidences from Italian case studies. Applied Soil Ecology 123: 693-698. DOI:
	10.1016/j.apsoil.2017.06.031
2*	Tang LL, Hayashi K, Kohyama K, Leon A (2018) Reconciling Life Cycle Environmental Impacts
	with Ecosystem Services: A Management Perspective on Agricultural Land Use. Sustainability
	10(3): 630. DOI: 10.3390/su10030630
3	Barrios E (2007) Soil biota, ecosystem services and land productivity. Ecological Economics
	64(2): 269-285. DOI: 10.1016/j.ecolecon.2007.03.004
4	Williams A, Hedlund K (2013) Indicators of soil ecosystem services in conventional and
	organic arable fields along a gradient of landscape heterogeneity in southern Sweden.
	Applied Soil Ecology 65: 1-7. DOI: 10.1016/j.apsoil.2012.12.019
5	Marichal R, Grimaldi M, Feijoo AM, Oszwaldd J, Praxedes C, Cobo DHR, Hurtado MD,
	Desjardins T, da Silva ML, Costag LGD, Miranda IS, Oliveira MND, Brown GG, Tselouiko S,
	Martins MB, Decaens T, Velasquez E, Lavelle P (2014) Soil macroinvertebrate communities
	and ecosystem services in deforested landscapes of Amazonia. Applied Soil Ecology 83: 177-
	185. DOI: 10.1016/j.apsoil.2014.05.006
6	Albizua A, Williams A, Hedlund K, Pascual U (2015) Crop rotations including ley and manure
	can promote ecosystem services in conventional farming systems. Applied Soil Ecology 95:
_	54-61. DOI: 10.1016/j.apsoil.2015.06.003
7	Kragt ME, Robertson MJ (2014) Quantifying ecosystem services trade-offs from agricultural
-	practices. Ecological Economics 102: 147-157. DOI: 10.1016/j.ecolecon.2014.04.001
8	Demestihas C, Plénet D, Génard M, Raynal C, Lescourret F (2017) Ecosystem services in
	orchards. A review. Agronomy for Sustainable Development 37(2): 12. DOI: 10.1007/s13593-
0	017-0422-1
9	Kearney SP, Fonte SJ, García E, Siles P, Chan KMA, Smukler SM (2019) Evaluating ecosystem
	service trade-offs and synergies from slash-and-mulch agroforestry systems in El Salvador.
10	Ecological Indicators 105: 264-278. DOI: 10.1016/j.ecolind.2017.08.032 Lavelle P, Rodríguez N, Arguello O, Bernal J, Botero C, Chaparro P, Gómez Y, Gutiérrez A,
10	Hurtado MDP, Loaiza S, Pullido SX, Rodríguez E, Sanabria C, Velásquez E, Fonte SJ (2014) Soil
	ecosystem services and land use in the rapidly changing orinoco river basin of colombia.
	Agriculture, Ecosystems and Environment 185: 106-117. DOI: 10.1016/j.agee.2013.12.020
11	Rutgers M, van Wijnen HJ, Schouten AJ, Mulder C, Kuiten AMP, Brussaard L, Breure AM
**	(2012) A method to assess ecosystem services developed from soil attributes with
	stakeholders and data of four arable farms. Science of the Total Environment 415: 39-48.
	DOI: 10.1016/j.scitotenv.2011.04.041
12	Costantini EAC, Castaldini M, Diago MP, Giffard B, Lagomarsino A, Schroers HJ, Priori S,
	Valboa G, Agnelli AE, Akça E, D'Avino L, Fulchin E, Gagnarli E, Kiraz ME, Knapič M, Pelengić R,
	Pellegrini S, Perria R, Puccioni S, Simoni S, Tangolar S, Tardaguila J, Vignozzi N, Zombardo A
	(2018) Effects of soil erosion on agro-ecosystem services and soil functions: A
	multidisciplinary study in nineteen organically farmed European and Turkish vineyards.
	Journal of Environmental Management 223: 614-624. DOI: 10.1016/j.jenvman.2018.06.065
13	Daryanto S, Fu B, Zhao W (2019) Evaluating the use of fire to control shrub encroachment in
	global drylands: A synthesis based on ecosystem service perspective. Science of the Total
	Environment 648: 285-292. DOI: 10.1016/j.scitotenv.2018.08.140
	Environment 648: 285-292. DOI: 10.1016/j.scitotenv.2018.08.140

 $^{^{\}rm 12*}$ The impact area discussed on this factsheet is not a focus of the cited paper

No.	Citation
14	Daryanto S, Fu BJ, Wang LX, Jacinthe PA, Zhao WW (2018) Quantitative synthesis on the
	ecosystem services of cover crops. Earth-Science Reviews 185: 357-373. DOI:
	10.1016/j.earscirev.2018.06.013
15	Demestihas C, Plénet D, Génard M, Garcia de Cortazar-Atauri I, Launay M, Ripoche D,
	Beaudoin N, Simon S, Charreyron M, Raynal C, Lescourret F (2018) Analyzing ecosystem
	services in apple orchards using the STICS model. European Journal of Agronomy 94: 108-
	119. DOI: 10.1016/j.eja.2018.01.009
16*	Egerer MH, Philpott SM, Liere H, Jha S, Bichier P, Lin BB (2018) People or place?
	Neighborhood opportunity influences community garden soil properties and soil-based
	ecosystem services. International Journal of Biodiversity Science, Ecosystem Services and
	Management 14(1): 32-44. DOI: 10.1080/21513732.2017.1412355
17	Syswerda SP, Robertson GP (2014) Ecosystem services along a management gradient in
	Michigan (USA) cropping systems. Agriculture Ecosystems & Environment 189: 28-35. DOI:
	10.1016/j.agee.2014.03.006
18*	Tsonkova P, Bohm C, Quinkenstein A, Freese D (2015) Application of partial order ranking to
	identify enhancement potentials for the provision of selected ecosystem services by
	different land use strategies. Agricultural Systems 135: 112-121. DOI:
	10.1016/j.agsy.2015.01.002
19	Tsonkova P, Quinkenstein A, Bohm C, Freese D, Schaller E (2014) Ecosystem services
	assessment tool for agroforestry (ESAT-A): An approach to assess selected ecosystem
	services provided by alley cropping systems. Ecological Indicators 45: 285-299. DOI:
	10.1016/j.ecolind.2014.04.024
20	Williams A, Hedlund K (2014) Indicators and trade-offs of ecosystem services in agricultural
	soils along a landscape heterogeneity gradient. Applied Soil Ecology 77: 1-8. DOI:
24	10.1016/j.apsoil.2014.01.001
21	Collard SJ, Zammit C (2006) Effects of land-use intensification on soil carbon and ecosystem
	services in Brigalow (Acacia harpophylla) landscapes of southeast Queensland, Australia.
22*	Agriculture Ecosystems & Environment 117(2-3): 185-194. DOI: 10.1016/j.agee.2006.04.004
22*	Solen LC, Nicolas J, de Sartre Xavier A, Thibaud D, Simon D, Michel G, Johan O (2018) Impacts
	of Agricultural Practices and Individual Life Characteristics on Ecosystem Services: A Case Study on Family Farmers in the Context of an Amazonian Pioneer Front. Environmental
	Management 61(5): 772-785. DOI: 10.1007/s00267-018-1004-y
23	Fleming WM, Rivera JA, Miller A, Piccarello M (2014) Ecosystem services of traditional
23	irrigation systems in northern New Mexico, USA. International Journal of Biodiversity
	Science, Ecosystem Services and Management 10(4): 343-350. DOI:
	10.1080/21513732.2014.977953
24*	Feld CK, Sousa JP, da Silva PM, Dawson TP (2010) Indicators for biodiversity and ecosystem
21	services: towards an improved framework for ecosystems assessment. Biodiversity and
	Conservation 19(10): 2895-2919. DOI: 10.1007/s10531-010-9875-0
25	Ma FJ, Eneji AE, Liu JT (2014) Understanding Relationships among Agro-Ecosystem Services
_	Based on Emergy Analysis in Luancheng County, North China. Sustainability 6(12): 8700-
	8719. DOI: 10.3390/su6128700
26	Nordborg M, Sasu-Boakye Y, Cederberg C, Berndes G (2017) Challenges in developing
-	regionalized characterization factors in land use impact assessment: impacts on ecosystem
	services in case studies of animal protein production in Sweden. International Journal of Life
	Cycle Assessment 22(3): 328-345. DOI: 10.1007/s11367-016-1158-x
L	

No.	Citation
27	Felipe-Lucia MR, Comin FA (2015) Ecosystem services-biodiversity relationships depend on
	land use type in floodplain agroecosystems. Land Use Policy 46: 201-210. DOI:
	10.1016/j.landusepol.2015.02.003
28	Forouzangohar M, Crossman ND, MacEwan RJ, Wallace DD, Bennett LT (2014) Ecosystem
	Services in Agricultural Landscapes: A Spatially Explicit Approach to Support Sustainable Soil
	Management. Scientific World Journal: 483298. DOI: 10.1155/2014/483298
29	Sanabria C, Lavelle P, Fonte SJ (2014) Ants as indicators of soil-based ecosystem services in
	agroecosystems of the Colombian Llanos. Applied Soil Ecology 84: 24-30. DOI: 10.1016/j.apsoil.2014.07.001
30	Rodríguez-Loinaz G, Alday JG, Onaindia M (2015) Multiple ecosystem services landscape
	index: A tool for multifunctional landscapes conservation. Journal of Environmental
	Management 147: 152-163. DOI: 10.1016/j.jenvman.2014.09.001
31	Baude M, Meyer BC, Schindewolf M (2019) Land use change in an agricultural landscape
	causing degradation of soil based ecosystem services. Science of the Total Environment 659:
	1526-1536. DOI: 10.1016/j.scitotenv.2018.12.455
32	Huq N, Bruns A, Ribbe L (2019) Interactions between freshwater ecosystem services and
	land cover changes in southern Bangladesh: A perspective from short-term (seasonal) and
	long-term (1973-2014) scale. Science of the Total Environment 650: 132-143. DOI:
	10.1016/j.scitotenv.2018.08.430
33	Santos-Martín F, Zorrilla-Miras P, Palomo-Ruiz I, Montes C, Benayas J, Maes J (2019)
	Protecting nature is necessary but not sufficient for conserving ecosystem services: A
	comprehensive assessment along a gradient of land-use intensity in Spain. Ecosystem
24	Services 35: 43-51. DOI: 10.1016/j.ecoser.2018.11.006
34	Huber R, Lehmann B (2010) Economies of Scope in the Agricultural Provision of Ecosystem
	Services: An Application to a High Cost Production Region. German Journal of Agricultural Economics 59(2): 91-105.
35*	Marks E, Aflakpui GKS, Nkem J, Poch RM, Khouma M, Kokou K, Sagoe R, Sebastia MT (2009)
55	Conservation of soil organic carbon, biodiversity and the provision of other ecosystem
	services along climatic gradients in West Africa. Biogeosciences 6(8): 1825-1838. DOI:
	10.5194/bg-6-1825-2009
36	Meyer MA, Chand T, Priess JA (2015) Comparing Bioenergy Production Sites in the
	Southeastern US Regarding Ecosystem Service Supply and Demand. Plos One 10(3):
	e0116336. DOI: 10.1371/journal.pone.0116336
37	Posthumus H, Rouquette JR, Morris J, Cowing DJG, Hess TM (2010) A framework for the
	assessment of ecosystem goods and services; a case study on lowland floodplains in
	England. Ecological Economics 69(7): 1510-1523. DOI: 10.1016/j.ecolecon.2010.02.011
38	Helfenstein J, Kienast F (2014) Ecosystem service state and trends at the regional to national
	level: A rapid assessment. Ecological Indicators 36: 11-18. DOI:
	10.1016/j.ecolind.2013.06.031
39	Kirchner M, Schmidt J, Kindermann G, Kulmer V, Mitter H, Prettenthaler F, Rudisser J,
	Schauppenlehner T, Schonhart M, Strauss F, Tappeiner U, Tasser E, Schmid E (2015)
	Ecosystem services and economic development in Austrian agricultural landscapes - The
	impact of policy and climate change scenarios on trade-offs and synergies. Ecological Economics 109: 161-174. DOI: 10.1016/j.ecolecon.2014.11.005
40	Maes J, Liquete C, Teller A, Erhard M, Paracchini ML, Barredo JI, Grizzetti B, Cardoso A,
40	Somma F, Petersen JE, Meiner A, Gelabert ER, Zal N, Kristensen P, Bastrup-Birk A, Biala K,
	Piroddi C, Egoh B, Degeorges P, Fiorina C, Santos-Martín F, Naruševičius V, Verboven J,
	Pereira HM, Bengtsson J, Gocheva K, Marta-Pedroso C, Snäll T, Estreguil C, San-Miguel-Ayanz

No.	Citation
	J, Pérez-Soba M, Grêt-Regamey A, Lillebø AI, Malak DA, Condé S, Moen J, Czúcz B, Drakou
	EG, Zulian G, Lavalle C (2016) An indicator framework for assessing ecosystem services in
	support of the EU Biodiversity Strategy to 2020. Ecosystem Services 17: 14-23. DOI:
	10.1016/j.ecoser.2015.10.023
41	Clerici N, Paracchini ML, Maes J (2014) Land-cover change dynamics and insights into
	ecosystem services in European stream riparian zones. Ecohydrology and Hydrobiology
	14(2): 107-120. DOI: 10.1016/j.ecohyd.2014.01.002
42	Nguyen TH, Cook M, Field JL, Khuc QV, Paustian K (2018) High-resolution trade-off analysis
	and optimization of ecosystem services and disservices in agricultural landscapes.
	Environmental Modelling & Software 107: 105-118. DOI: 10.1016/j.envsoft.2018.06.006