

Ecosystem Service	Chemical condition of salt waters
CICES class name	Regulation of the chemical condition of salt waters by living
	processes
CICES Section	Regulation & Maintenance (Biotic)
CICES Class code	2.2.5.2

Brief Description

- Controlling the chemical quality of salt water
- Maintenance of the chemical condition of salt waters by plant or animal species that enable human use or health
- This class should be used "where anthropogenic waste and pollution input is minimal, and a more natural regime maintains the quality of water bodies concerned and where this contributes to human well-being." (Haines-Young, 2023). For mitigating effects of strong anthropogenic contaminations, classes 2.1.1.1 (Biotic remediation of waste) and 2.1.1.2 (Biotic filtration, sequestration and storage of waste) should be used.

Sample Indicators

Indicator values from			
Experiment or direct measurement	B	Survey	
Expert assessment	.	Statistical- or census data	
Model or GIS	ل	Literature values	
Stakeholder participation	₩% €	Not provided	\oslash

Table 1: Field Scale

Indicator	Unit	Indicator values from
^[7] NO ₃ – loss through leaching and runoff, following cover crop or fallow period	Not provided	
^[7] Dissolved P loss through leaching and runoff, following cover crop or fallow period	Not provided	
^[8] Nitrate leaching prevention: nitrate concentration in drained water	mg NO ₃ * liter of drained water ⁻¹	<u>ل</u> گ

Table 2: Farm Scale

values nom	Indicator	Unit	Indicator values from
------------	-----------	------	--------------------------

^[3] Share of nitrogen retained during water passage between agricultural sub-catchment and sea.	%	بر •
^[3] Share of farmers that express clearly a value and care for the health of the land.	%	<mark>ــ</mark> الأ

Table 3: Regional Scale

Indicator	Unit	Indicator values from
^[1] Phosphorus retention, calculated with InVEST model	kg * ha ⁻¹	ل ر ا
^[6] Costal nitrogen load per agricultural area in the watershed: amount of nitrogen leached from soils (and not retained) that reaches the coast, divided by the agricultural area	t * ha ⁻² * yr ⁻¹	र्द् (र्
^[9] Nitrogen retention at watershed level calculated with InVEST's Nutrient Retention Model. Calculation based on nitrogen loading and vegetation filtering value for different land-use classes	t N * yr- ¹ * grid cell ⁻¹	T
^[11] Leakage of nutrients	kg * ha ⁻¹ * yr ⁻¹	
^[11] Turnover rates of nutrients, e.g., N, P	kg * yr ⁻¹	
^[11] Total dissolved solids	mg * l ⁻¹	
^[11] Decomposition rate of organic matter	kg * ha ⁻¹	
^[2] Water purification: ecosystem service supply depends on the land cover class. The matrix defined by Burkhard et al., 2012 (DOI:10.1016/j.ecolind.2011.06.019) was and used in this study.	Index 0-5	<u>4</u>
^[3] Share of nitrogen retained during water passage between agricultural sub-catchment and sea.	%	<u>.</u>
^[3] Share of farmers that express clearly a value and care for the health of the land.	%	<u>س</u>
^[10] Mediation of water pollution such as excess nitrogen removal: expert based index for ecosystem service supply by land cover class [1-5], multiplied by the area of the land cover class [km ²]	Index 1-5 * km ⁻²	
^[10] Mediation of water pollution such as excess nitrogen removal value: expert based index for ecosystem service supply by land cover class [1-5], multiplied by the area of the land cover class [km ²] and a literature-based monetary value of the ecosystem service	\$ * ha ⁻¹ * yr ⁻¹	•••, 📖 , 🏹
^[11] Area occupied by riparian forests	ha	
^[12] Mass of a specific nutrient retained	ton/ (km ² * year)	\otimes
^[12] Volume of purified water	m ³ /(km ² *year)	\otimes

Table 4: National Scale

Indicator	Unit	Indicator values from
^[5] Indicators of groundwater quality	Not specified	\otimes

Table 5: Multinational Scale

Indicator	Unit	Indicator values from
^[4] Water purification: Values for Corine land cover classes, based on values published by Burkhard et al. (2009; DOI:	Index 0-5	2
10.3097/LO.200915) and modified for the context of riparian zones.		

References

No.	Citation
1	Meyer MA, Chand T, Priess JA (2015) Comparing Bioenergy Production Sites in the
	Southeastern US Regarding Ecosystem Service Supply and Demand. Plos One 10(3):
	e0116336. DOI: 10.1371/journal.pone.0116336
2 ¹⁴	Zhang ZM, Gao JF, Fan XY, Lan Y, Zhao MS (2017) Response of ecosystem services to
*	socioeconomic development in the Yangtze River Basin, China. Ecological Indicators 72: 481-
	493. DOI: 10.1016/j.ecolind.2016.08.035
3	Andersson E, Nykvist B, Malinga R, Jaramillo F, Lindborg R (2015) A social-ecological analysis
	of ecosystem services in two different farming systems. Ambio 44(1): 102-112. DOI:
	10.1007/s13280-014-0603-y
4	Clerici N, Paracchini ML, Maes J (2014) Land-cover change dynamics and insights into
	ecosystem services in European stream riparian zones. Ecohydrology and Hydrobiology
	14(2): 107-120. DOI: 10.1016/j.ecohyd.2014.01.002
5	Maes J, Liquete C, Teller A, Erhard M, Paracchini ML, Barredo JI, Grizzetti B, Cardoso A,
	Somma F, Petersen JE, Meiner A, Gelabert ER, Zal N, Kristensen P, Bastrup-Birk A, Biala K,
	Piroddi C, Egoh B, Degeorges P, Fiorina C, Santos-Martín F, Naruševičius V, Verboven J,
	Pereira HM, Bengtsson J, Gocheva K, Marta-Pedroso C, Snäll T, Estreguil C, San-Miguel-Ayanz
	J, Pérez-Soba M, Grêt-Regamey A, Lillebø AI, Malak DA, Condé S, Moen J, Czúcz B, Drakou
	EG, Zulian G, Lavalle C (2016) An indicator framework for assessing ecosystem services in
	support of the EU Biodiversity Strategy to 2020. Ecosystem Services 17: 14-23. DOI: 10.1016/j.ecoser.2015.10.023
6	Odgaard MV, Turner KG, Bøcher PK, Svenning JC, Dalgaard T (2017) A multi-criteria,
0	ecosystem-service value method used to assess catchment suitability for potential wetland
	reconstruction in Denmark. Ecological Indicators 77: 151-165. DOI:
	10.1016/j.ecolind.2016.12.001
7	Daryanto S, Fu BJ, Wang LX, Jacinthe PA, Zhao WW (2018) Quantitative synthesis on the
	ecosystem services of cover crops. Earth-Science Reviews 185: 357-373. DOI:
	10.1016/j.earscirev.2018.06.013
8	Demestihas C, Plénet D, Génard M, Garcia de Cortazar-Atauri I, Launay M, Ripoche D,
	Beaudoin N, Simon S, Charreyron M, Raynal C, Lescourret F (2018) Analyzing ecosystem
	services in apple orchards using the STICS model. European Journal of Agronomy 94: 108-
	119. DOI: 10.1016/j.eja.2018.01.009
9	Hashimoto S, DasGupta R, Kabaya K, Matsui T, Haga C, Saito O, Takeuchi K (2018) Scenario
	analysis of land-use and ecosystem services of social-ecological landscapes: implications of
	alternative development pathways under declining population in the Noto Peninsula, Japan.
	Sustainability Science 14: 53-75. DOI: 10.1007/s11625-018-0626-6
10	Huq N, Bruns A, Ribbe L (2019) Interactions between freshwater ecosystem services and land
	cover changes in southern Bangladesh: A perspective from short-term (seasonal) and long-
	term (1973-2014) scale. Science of the Total Environment 650: 132-143. DOI:
	10.1016/j.scitotenv.2018.08.430
11	Phama HV, Torresan S, Critto A, Marcomini A (2019) Alteration of freshwater ecosystem
	services under global change - A review focusing on the Po River basin (Italy) and the Red
	River basin (Vietnam). Science of the Total Environment 652: 1347-1365. DOI:
	10.1016/j.scitotenv.2018.10.303
12	Gasparatos A, Romeu-Dalmau C, von Maltitz GP, Johnson FX, Shackleton C, Jarzebski MP,
	Jumbe C, Ochieng C, Mudombi S, Nyambane A, Willis K (2018) Mechanisms and indicators for

 $^{^{\}rm 14*}$ The impact area discussed on this factsheet is not a focus of the cited paper

No.	Citation
	assessing the impact of biofuel feedstock production on ecosystem services. Biomass &
	Bioenergy 114: 157-173. DOI: 10.1016/j.biombioe.2018.01.024
