

| Ecosystem Service    | Pollination                                             |
|----------------------|---------------------------------------------------------|
| CICES class name     | Pollination (or 'gamete' dispersal in a marine context) |
| <b>CICES Section</b> | Regulation & Maintenance (Biotic)                       |
| CICES Class code     | 2.2.2.1                                                 |

## **Brief Description**

- Pollinating fruit trees and other plants
- The fertilization of crops by animals that maintains or increases the abundance and/or diversity of plant species that people use or enjoy, or benefit from

## **Sample Indicators**

| Indicator values from            |          |                             |                   |
|----------------------------------|----------|-----------------------------|-------------------|
| Experiment or direct measurement | S        | Survey                      | و<br>۱۱۱۱<br>۱۱۱۱ |
| Expert assessment                | <b>.</b> | Statistical- or census data | áÓ                |
| Model or GIS                     | <b>ل</b> | Literature values           |                   |
| Stakeholder participation        |          | Not provided                | $\Diamond$        |

#### Table 1: Field Scale

| Indicator                                                                           | Unit         | Indicator<br>values from |
|-------------------------------------------------------------------------------------|--------------|--------------------------|
| <sup>[1]</sup> Pollen transported by pollinators                                    | kg * yr⁻¹    | $\otimes$                |
| <sup>[11]</sup> Abundance and diversity of pollinators                              | Not provided | $\otimes_{\mu}$          |
| <sup>[15]</sup> Abundance of bumblebees                                             | Not provided | <u>\$</u>                |
| <sup>[15]</sup> Plant Simpson diversity as an indicator for bumblebee<br>abundance. | Not provided | B                        |
| <sup>[11]</sup> Number of seeds per fruit                                           | #            | $\otimes_{\mu}$          |
| <sup>[11]</sup> Share of fruit set pollinated                                       | %            | ©,₽                      |



Table 2: Farm Scale

| Indicator                                                                                                                                          | Unit                                 | Indicator<br>values from |
|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------|
| <sup>[8]</sup> Share of cropland area less than 100m from a non-cropland edge other than water or impervious surfaces. Values were scaled to [0-1] | %                                    | <b>م</b> ر<br>م          |
| <sup>[8]</sup> Share of farmers that consider open landscapes a valued landscape feature. Values were scaled to [0-1]                              | %                                    | <u>م</u> رگر             |
| <sup>[12]</sup> Vegetation diversity: four-level index based on the number<br>of plant species                                                     | Index [poor-fair-<br>good-excellent] | B                        |
| <sup>[19]</sup> Richness of pollinators: Total number of Sphingidae collected                                                                      | #                                    | B                        |

#### Table 3: Regional Scale

| Indicator                                                                                                                                                                                                                                                  | Unit           | Indicator<br>values from                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------|
| <sup>[2]</sup> Area of potential nesting sites for wild bees                                                                                                                                                                                               | m <sup>2</sup> | <u>م</u> ر                                  |
| <sup>[2]</sup> Distance between potential nesting sites for wild bees and<br>nearest arable land cell (GIS 10x10 m cells)                                                                                                                                  | m              | <u>ــــــــــــــــــــــــــــــــــــ</u> |
| <sup>[2]</sup> Number of visitations from wild bees to arable fields,<br>calculated as the sum of visitation probabilities based on<br>proximity between potential nesting sites and arable fields                                                         | -              | ्र                                          |
| <sup>[3]</sup> Relative pollination potential: continuous index, based on<br>the availability of floral resources, bee flight ranges and the<br>availability of nesting sites                                                                              | -              | <u>4</u>                                    |
| <sup>[5]</sup> Share of land cover suitable as pollinator habitat in the direct vicinity of cropland                                                                                                                                                       | %              | <u>-</u><br>4                               |
| <sup>[8]</sup> Share of cropland area less than 100m from a non-<br>cropland edge other than water or impervious surfaces.<br>Values were scaled to [0-1]                                                                                                  | %              | <i>न</i> ्                                  |
| <sup>[13]</sup> Share of area reachable by cavity and ground-nesting pollinator species, assuming 100 and 350 m flight and foraging distances, calculated using the equations by (Lonsdorf et al., 2009)                                                   | %              | <del>ر</del> (                              |
| <sup>[8]</sup> Share of farmers that consider open landscapes a valued landscape feature. Values were scaled to [0-1]                                                                                                                                      | %              | <u></u>                                     |
| <sup>[6]</sup> Pollination contribution by ecosystems (index): For each cropland, a) the crop pollination dependency ratio was calculated based on the specific crop type, b) the pollinator visitation probability was calculated as a regression between | -              | <u>ح</u> م                                  |



| distance to natural habitat and visitation rate. The sum of a) and b) was then assigned to the closest natural ecosystem.                                                                                                                                                                                                                                                    |                                    |                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------|
| <sup>[7]</sup> Pollination: Values are assigned based on land cover class.<br>The matrix defined by Burkhard et al., 2012<br>(DOI:10.1016/j.ecolind.2011.06.019) was adapted and used<br>in this study.                                                                                                                                                                      | Index 0-5                          | <u>*</u>                             |
| <sup>[10]</sup> Habitat scores: number of bee species and medicinal<br>plant species found in a specific land use class divided by<br>benchmark value (number of species in land use class with<br>the highest absolute number of species)                                                                                                                                   | %                                  | A, D                                 |
| <sup>[16]</sup> Number of bird & bee pollinators per hectare                                                                                                                                                                                                                                                                                                                 | # * ha <sup>-1</sup>               | ₽, <sup>™</sup> , ₽                  |
| <sup>[16]</sup> Yield of pollinated crops                                                                                                                                                                                                                                                                                                                                    | t * ha <sup>-1</sup>               | ₽ <b>.</b> , <sup>₩</sup> , <b>₽</b> |
| <sup>[17]</sup> Abundance of pollinators                                                                                                                                                                                                                                                                                                                                     | Not provided                       |                                      |
| <sup>[17]</sup> Richness of pollinators                                                                                                                                                                                                                                                                                                                                      | Not provided                       |                                      |
| <sup>[17]</sup> Diversity of pollinators                                                                                                                                                                                                                                                                                                                                     | Not provided                       |                                      |
| <sup>[17]</sup> Effects of pollinators                                                                                                                                                                                                                                                                                                                                       | Not provided                       |                                      |
| <ul> <li><sup>[18]</sup> Area pollination indicators (Lonsdorf et al., 2009), calculated for different assumptions regarding the distances that pollinators can cover (100 m, 350 m, 500 m):</li> <li>Area providing flowering [ha]</li> <li>Area suitable for nesting of wild bees and bumblebees</li> <li>Share of flowering sites reachable from nesting sites</li> </ul> | [ha]<br>[ha]<br>[%]                | <del>آر</del>                        |
| <sup>[21]</sup> Seed weight of pollinated plants                                                                                                                                                                                                                                                                                                                             | tons / (km <sup>2</sup> *<br>year) | $\otimes$                            |

#### Table 4: National Scale

| Indicator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Unit | Indicator<br>values from |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------|
| <ul> <li><sup>[4]</sup> Resilience of pollination service: number of pollinators morphospecies in the (primarily) pollinator taxa:</li> <li>Lepidoptera, Cerambycidae, Buprestidae and Aculeata. Two or more specimens are considered the same morphospecies if an entomologically trained person (but non-specialist for the respective species groups) can not see external morphological differences. To save costs, only seven weeks where maximum catches are expected were sampled, only the four weeks with the highest catches were identified.</li> </ul> | #    |                          |
| <sup>[5]</sup> Share of land cover suitable as pollinator habitat in the direct vicinity of cropland                                                                                                                                                                                                                                                                                                                                                                                                                                                               | %    | <u>م</u> رً              |



| <sup>[14]</sup> Pollination potential                                                                                                                                                                                                                                                                                                                                                             | Not specified | $\otimes$   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------|
| <sup>[14]</sup> Pollinators distribution                                                                                                                                                                                                                                                                                                                                                          | Not specified | $\otimes$   |
| <sup>[14]</sup> Pollinators species richness                                                                                                                                                                                                                                                                                                                                                      | Not specified | $\otimes$   |
| <sup>[14]</sup> Number of beehives                                                                                                                                                                                                                                                                                                                                                                | Not specified | $\otimes$   |
| <sup>[14]</sup> Areal coverage of vegetation features supporting<br>pollination (hedgerows, flower strips, High Nature Value<br>Farmland etc.)                                                                                                                                                                                                                                                    | Not specified | $\otimes$   |
| <sup>[20]</sup> Pollinator visitation probability: Land use classes<br>providing wild bee habitats are identified, with<br>grassland/steppe; garrigue and woodland considered full<br>habitats (100%) and arable land and orchards considered<br>partial habitats (50%). Visitation Probability is then<br>calculated as: Visitation Probability = e <sup>(-0.00104 × Distance_to_habitat).</sup> | [-]           | <u>áð</u> Í |

#### Table 5: Multinational Scale

| Indicator                                                                                                                                                                                  | Unit      | Indicator<br>values from |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------|
| <sup>[3]</sup> Relative pollination potential: continuous index, based on<br>the availability of floral resources, bee flight ranges and the<br>availability of nesting sites              | [-]       | <u>र</u> ्               |
| <sup>[9]</sup> Pollination: Corine land cover classes based on values<br>published by Burkhard et al. (2009; DOI:<br>10.3097/LO.200915) and modified for the context of riparian<br>zones. | Index 0-5 | <b>.</b>                 |

# **References**

| No.             | Citation                                                                                     |
|-----------------|----------------------------------------------------------------------------------------------|
| 1 <sup>9*</sup> | Fagerholm N, Torralba M, Burgess PJ, Plieninger T (2016) A systematic map of ecosystem       |
|                 | services assessments around European agroforestry. Ecological Indicators 62: 47-65. DOI:     |
|                 | 10.1016/j.ecolind.2015.11.016                                                                |
| 2               | Lautenbach S, Kugel C, Lausch A, Seppelt R (2011) Analysis of historic changes in regional   |
|                 | ecosystem service provisioning using land use data. Ecological Indicators 11(2): 676-687.    |
|                 | DOI: 10.1016/j.ecolind.2010.09.007                                                           |
| 3               | Mouchet MA, Paracchini ML, Schulp CJE, Sturck J, Verkerk PJ, Verburg PH, Lavorel S (2017)    |
|                 | Bundles of ecosystem (dis)services and multifunctionality across European landscapes.        |
|                 | Ecological Indicators 73: 23-28. DOI: 10.1016/j.ecolind.2016.00.026                          |
| 4               | Obrist MK, Duelli P (2010) Rapid biodiversity assessment of arthropods for monitoring        |
|                 | average local species richness and related ecosystem services. Biodiversity and Conservation |
|                 | 19(8): 2201-2220. DOI: 10.1007/s10531-010-9832-y                                             |

 $<sup>^{\</sup>mathfrak{9}^*}$  The impact area discussed on this factsheet is not a focus of the cited paper



| No. | Citation                                                                                       |
|-----|------------------------------------------------------------------------------------------------|
| 5   | Schulp CJE, Van Teeffelen AJA, Tucker G, Verburg PH (2016) A quantitative assessment of        |
|     | policy options for no net loss of biodiversity and ecosystem services in the European Union.   |
|     | Land Use Policy 57: 151-163. DOI: 10.1016/j.landusepol.2016.05.018                             |
| 6   | Vigl LE, Tasser E, Schirpke U, Tappeiner U (2017) Using land use/land cover trajectories to    |
|     | uncover ecosystem service patterns across the Alps. Regional Environmental Change 17(8):       |
|     | 2237-2250. DOI: 10.1007/s10113-017-1132-6                                                      |
| 7*  | Zhang ZM, Gao JF, Fan XY, Lan Y, Zhao MS (2017) Response of ecosystem services to              |
|     | socioeconomic development in the Yangtze River Basin, China. Ecological Indicators 72: 481-    |
|     | 493. DOI: 10.1016/j.ecolind.2016.08.035                                                        |
| 8   | Andersson E, Nykvist B, Malinga R, Jaramillo F, Lindborg R (2015) A social–ecological analysis |
|     | of ecosystem services in two different farming systems. Ambio 44(1): 102-112. DOI:             |
|     | 10.1007/s13280-014-0603-y                                                                      |
| 9   | Clerici N, Paracchini ML, Maes J (2014) Land-cover change dynamics and insights into           |
|     | ecosystem services in European stream riparian zones. Ecohydrology and Hydrobiology            |
|     | 14(2): 107-120. DOI: 10.1016/j.ecohyd.2014.01.002                                              |
| 10  | Cotter M, Häuser I, Harich FK, He P, Sauerborn J, Treydte AC, Martin K, Cadisch G (2017)       |
|     | Biodiversity and ecosystem services–A case study for the assessment of multiple species and    |
|     | functional diversity levels in a cultural landscape. Ecological Indicators 75: 111-117. DOI:   |
|     | 10.1016/j.ecolind.2016.11.038                                                                  |
| 11  | Demestihas C, Plénet D, Génard M, Raynal C, Lescourret F (2017) Ecosystem services in          |
|     | orchards. A review. Agronomy for Sustainable Development 37(2): 12. DOI: 10.1007/s13593-       |
|     | 017-0422-1                                                                                     |
| 12  | Fleming WM, Rivera JA, Miller A, Piccarello M (2014) Ecosystem services of traditional         |
|     | irrigation systems in northern New Mexico, USA. International Journal of Biodiversity          |
|     | Science, Ecosystem Services and Management 10(4): 343-350. DOI:                                |
|     | 10.1080/21513732.2014.977953                                                                   |
| 13  | Kay S, Crous-Duran J, Ferreiro-Domínguez N, García de Jalón S, Graves A, Moreno G,             |
|     | Mosquera-Losada MR, Palma JHN, Roces-Díaz JV, Santiago-Freijanes JJ, Szerencsits E, Weibel     |
|     | R, Herzog F (2018) Spatial similarities between European agroforestry systems and              |
|     | ecosystem services at the landscape scale. Agroforestry Systems 92(4): 1075-1089. DOI:         |
|     | 10.1007/s10457-017-0132-3                                                                      |
| 14  | Maes J, Liquete C, Teller A, Erhard M, Paracchini ML, Barredo JI, Grizzetti B, Cardoso A,      |
|     | Somma F, Petersen JE, Meiner A, Gelabert ER, Zal N, Kristensen P, Bastrup-Birk A, Biala K,     |
|     | Piroddi C, Egoh B, Degeorges P, Fiorina C, Santos-Martín F, Naruševičius V, Verboven J,        |
|     | Pereira HM, Bengtsson J, Gocheva K, Marta-Pedroso C, Snäll T, Estreguil C, San-Miguel-Ayanz    |
|     | J, Pérez-Soba M, Grêt-Regamey A, Lillebø AI, Malak DA, Condé S, Moen J, Czúcz B, Drakou        |
|     | EG, Zulian G, Lavalle C (2016) An indicator framework for assessing ecosystem services in      |
|     | support of the EU Biodiversity Strategy to 2020. Ecosystem Services 17: 14-23. DOI:            |
|     | 10.1016/j.ecoser.2015.10.023                                                                   |
| 15* | Peters VE, Campbell KU, Dienno G, García M, Leak E, Loyke C, Ogle M, Steinly B, Crist TO       |
|     | (2016) Ants and plants as indicators of biodiversity, ecosystem services, and conservation     |
|     | value in constructed grasslands. Biodiversity and Conservation 25(8): 1481-1501. DOI:          |
|     | 10.1007/s10531-016-1120-z                                                                      |
| 16  | Adhikari S, Baral H, Nitschke CR (2018) Identification, Prioritization and Mapping of          |
|     | Ecosystem Services in the Panchase Mountain Ecological Region of Western Nepal. Forests        |
|     | 9(9): 554. DOI: 10.3390/f9090554                                                               |
| 17  | Duarte GT, Santos PM, Cornelissen TG, Ribeiro MC, Paglia AP (2018) The effects of landscape    |
|     | patterns on ecosystem services: meta-analyses of landscape services. Landscape Ecology         |
|     | 33(8): 1247-1257. DOI: 10.1007/s10980-018-0673-5                                               |



| No. | Citation                                                                                      |
|-----|-----------------------------------------------------------------------------------------------|
| 18  | Kay S, Crous-Duran J, García de Jalón S, Graves A, Palma JHN, Roces-Díaz JV, Szerencsits E,   |
|     | Weibel R, Herzog F (2018) Landscape-scale modelling of agroforestry ecosystems services in    |
|     | Swiss orchards: a methodological approach. Landscape Ecology 33(9): 1633-1644. DOI:           |
|     | 10.1007/s10980-018-0691-3                                                                     |
| 19* | Solen LC, Nicolas J, de Sartre Xavier A, Thibaud D, Simon D, Michel G, Johan O (2018) Impacts |
|     | of Agricultural Practices and Individual Life Characteristics on Ecosystem Services: A Case   |
|     | Study on Family Farmers in the Context of an Amazonian Pioneer Front. Environmental           |
|     | Management 61(5): 772-785. DOI: 10.1007/s00267-018-1004-y                                     |
| 20  | Balzan MV, Caruana J, Zammit A (2018) Assessing the capacity and flow of ecosystem            |
|     | services in multifunctional landscapes: Evidence of a rural-urban gradient in a               |
|     | Mediterranean small island state. Land Use Policy 75: 711-725. DOI:                           |
|     | 10.1016/j.landusepol.2017.08.025                                                              |
| 21  | Gasparatos A, Romeu-Dalmau C, von Maltitz GP, Johnson FX, Shackleton C, Jarzebski MP,         |
|     | Jumbe C, Ochieng C, Mudombi S, Nyambane A, Willis K (2018) Mechanisms and indicators          |
|     | for assessing the impact of biofuel feedstock production on ecosystem services. Biomass &     |
|     | Bioenergy 114: 157-173. DOI: 10.1016/j.biombioe.2018.01.024                                   |