

Impact Area & Indicator Factsheet: Ecosystem Services

Ecosystem Service	Erosion control
CICES class name	Control of erosion rates
CICES Section	Regulation & Maintenance (Biotic)
CICES Class code	2.2.1.1

Brief Description

- Reducing soil erosion
- Reducing the loss of material through the stabilizing effects of plants and animals, e.g. earthworms increasing aggregate stability. Erosion control reduces the loss of valuable topsoil and the associated effects of carbon loss, pollution and human health risks (dust)

Sample Indicators

Indicator values from			
Experiment or direct measurement	ß	Survey	و ۱۱۱۱ ۱۱۱۱
Expert assessment	•	Statistical- or census data	áÓ
Model or GIS	Ţ	Literature values	
Stakeholder participation		Not provided	\otimes

Table 1: Field Scale

Indicator	Unit	Indicator values from
^[1] Sediment lost by erosion	t * yr ⁻¹	\oslash
^[8] Soil loss	Not provided	
^[9] Annual total sediment yield in runoff	t * ha ⁻¹	ل
^[2] Erosion regulation potential	t * ha ⁻¹ * yr ⁻¹	
^[5] Erosion by water	t * ha ⁻¹ * yr ⁻¹	<u>م</u> ر م
^[6] Erosion by water	t * ha ⁻¹ * yr ⁻¹	<u>ل</u> ل
^[5] Erosion by wind (measured with DIN 19706 method)	-	<u>ل</u> ل

Impact Area & Indicator Factsheet: Ecosystem Services

^[6] Erosion by wind (measured with DIN 19706 method)	-	<u>ل</u> ل ال
^[3] Change in soil height, measured by means of pins hammered into the soil at the beginning of measurements	mm	B
^[7] Bare soils	Not provided	
^[3] Soil mulch cover (non-living vegetative biomass)	kg * ha⁻¹	B
^[7] Litter cover	Not provided	
^[7] Biological soil cover	Not provided	
^[4] Drainage	mm * yr⁻¹	-

Table 2: Farm Scale

Indicator	Unit	Indicator values from
^[11] Prevention of water erosion: rate of water infiltration into the soil	mm * ha ⁻¹	B
^[12] Bank stability: Share of irrigation channel bank considered stable (not vertical, un-vegetated or eroded), expressed as a four-level index	%, Index: poor- fair-good- excellent	B
^[12] Vegetation cover, expressed as a four-level index	%, Index: poor- fair-good- excellent	B
^[10] Index for share of fields with continuous living cover. The index is calculated by dividing the observed value by a target value. Target values may be average or maximum values found in region or empirical values from literature. If the calculated index is higher than 1, it is set to one.	Index 0 - 1), T
^[10] Index for share of farm fields protected by conservation structures such as field buffers. The index is calculated by dividing the observed value by a target value. Target values may be average or maximum values found in region, or empirical values from literature. If the calculated index is higher than 1, it is set to one.	Index 0 - 1	, T

Table 3: Regional Scale

Indicator	Unit	Indicator values from
^[35] Annual average erosion	kg * ha ⁻¹ * yr ⁻¹	

^[25] Erosion rate calculated by modified Universal-Soil-Loss- Equation (USLE)	t * ha ⁻¹ * yr ⁻¹	T
^[31] Annual soil erosion, assessed using the Revised Universal Soil Loss Equation (RUSLE)	t soil * ha ⁻¹ * yr ⁻¹	T
^[20] Modelled erosion, calculated with LANCA model (simplified Universal Soil Loss Equation (USLE)) and with Revised Universal Soil Loss Equation (RUSLE)	t soil * ha ⁻¹ * yr ⁻¹	Ţ
^[32] Potential soil erosion level calculated with Revised Universal Soil Loss Equation (RUSLE)	t * ha ⁻¹ * yr ⁻¹	, ,
^[36] Soil erosion by water, calculated with Revised Universal Soil Loss Equation (RUSLE)	t soil * ha ⁻¹ * yr ⁻¹	م ر ۲
^[9] Annual total sediment yield in runoff	t * ha ⁻¹	<u>ل</u> ر س
^[35] Annual average sediment in rivers	t * yr ⁻¹	
^[35] Annual average sediment retention	kg * ha ⁻¹ * yr ⁻¹	
^[19] Sediment retention, calculated with InVEST model based on universal soil loss equation and the land use/land cover specific sediment removal efficiencies	Mg * ha ⁻¹	ر
^[35] Annual sediment retention to reservoirs	kg * yr ⁻¹	
^[27] Modelled rates of water caused erosion and accumulation for a 10-year rainfall event	t * ha ⁻¹	4
^[23] Erosion control: Difference between the calculated erosion (using the Universal Soil Loss Equation) for a situation of bares soils and the current situation (considering the factors C: land cover management and P: supporting practices)	kg * m ⁻²	Ţ
^[28] Erosion control: Difference between the calculated erosion (using the InVEST Model based on the Universal Soil Loss Equation) in a model run that accounts for land cover and land management and in one that does not	t * ha ⁻¹	Ţ
^[33] Erosion control: Difference between the calculated erosion (using the InVEST Model based on the Revised Universal Soil Loss Equation) in a model run that accounts for land cover and land management and in one that does not	t * ha ⁻¹	Ţ
^[15] Erosion control: Difference between the calculated erosion rates (using the Universal Soil Loss Equation) with- and without considering land cover	t soil * pixel area ⁻¹ (e.g., 30 m * 30 m)	يرً.
^[34] Soil conservation calculated by RUSLE equation: A = R * K * LS * (1 - C * P) With: A – soil conservation, R – rainfall erosivity factor, K – soil erodibility factor, LS – slope length and steepness factor. C –	t * ha ⁻¹ * yr ⁻¹	Ţ

cover and management factor, P – conservation practice factor		
^[14] Soil erosion protection: C-factor in the Universal Soil Loss Equation (USLE)	-	.
^[17] Soil erosion protection: C-factor in the Universal Soil Loss Equation (USLE)	-	<u>ح</u>
^[29] Soil formation and erosion prevention: expert-based index for ES provision by land cover class [1-5] multiplied by the area of land cover class	km ²	₽, <u>,</u> <u></u>
^[29] Soil formation and erosion prevention value: expert-based index for ES provision by land cover class [1-5] multiplied by the area of land cover class and a literature-based monetary value of ES	km ² , \$ * ha ⁻¹ * yr ⁻	₽, <u>,</u> ₽
^[30] Wind erosion: Expert-/stakeholder rating of how much of erosion control can be provided by a landscape (represented by a land use map), using a 6-point Lickert-scale	none - highest capacity	2
^[30] Wind erosion: Expert-/stak eholder rating based on pairwise comparisons of landscapes (represented by land use maps) in an Analytical Hierarchical Process (AHP). Experts select the landscape with higher capacity for providing erosion control and rate the difference between the two landscapes	1: equal capacity - 9: absolute preference of one landscape	2 -
^[18] "Emergy" of topsoil loss, calculated as: $E = L_{OM} * T_{OM} + L_N * T_N + L_P * T_P + L_K * T_K$ With: E – Emergy, L _{OM} – loss of topsoil organic matter, T _{OM} – transformity of organic matter, L _N – loss of topsoil nitrogen, T _N – transformity of nitrogen, L _P – loss of topsoil phosphorus, T _P – transformity of phosphorus, L _K – loss of topsoil potassium, T _K – transformity of potassium	seJ	ஹ்
^[35] Number of prevented hazards	# * yr ⁻¹	
^[26] Area affected by erosion	ha	₽, [∞] , ₽
^[24] Share of areas without erosion problems relative to municipality's surface. Values were normalized [0-1] using benchmark values where available and observed values otherwise.	%	\otimes
^[13] Erosion control capacity: values are assigned for different land cover classes. Index values were taken from Burkhard et al. (2012, DOI:10.1016/j.ecolind.2011.06.019)).	Index 0 - 5	.
^[21] Erosion regulation: values are assigned for different land cover classes. The matrix defined by Burkhard et al., 2012 (DOI:10.1016/j.ecolind.2011.06.019) was adapted and used in this study.	Index 0 - 5	Ţ

^[16] Relative erosion sensitivity (based on modified Universal Soil Loss Equation (USLE)), considering soil type, slope, land use and distance to water	-	ير •
[22] Resistance to soil erosion from water, calculated using the Universal Soil Loss Equation (USLE): Resistance = USLE K_factor (soil) * USLE S_factor (slope)		Ţ
^[22] Resistance to soil erosion from wind	1: very low - 5: very high	<u>-</u>
^[32] Rating of current service provision per land use class by expert-stakeholders	Rating 0 - 10	₽ , ₽
^[32] Rating of increases/decreases of service provision in scenarios, relative to the status quo	%	₽, ÊĨ
^[37] Soil protection $SP = NPP * (1 - VC_{NPP}) * (1 - S_{cf}) * 1.5$ With: NPP – Net Primary Production calculated from NDVI- values and expressed on a relative scale set to [0 – 1000], VC _{NPP} – coefficient of variation of NPP [0 – 1], S _{cf} – slope average correction factor of the study area [0 – 1].	Not specified	<u>F</u>
^[38] Soil protection factor. Region-specific and land use specific protection factor. Only areas with erosion risk > 2 t * ha ⁻¹ (calculated using the Universal Soil Loss Equation) are considered.	Not specified	₽ <u>,</u>
^[35] Natural barriers against floods (dunes, mangroves, wetlands, coral reefs)	ha	4
^[35] Vegetation cover	%	
^[35] Conservation of river banks	km	
^[43] Amount of retained soil per unit area	tons / (km ² * year)	\otimes

Table 4: National Scale

Indicator	Unit	Indicator values from
^[41] Calculated current water Erosion (using modified Universal Soil Loss Equation (USLE))	t * ha ⁻¹ * yr ⁻¹	P) 📶
^[40] Soil erosion risk	Not specified	\otimes
^[41] Avoided water Erosion: Difference in calculated erosion (modified Universal Soil Loss Equation (USLE)) between the real situation and a hypothetical situation without vegetative cover	t * ha ⁻¹ * yr ⁻¹	ு, <u>ش</u>

Impact Area & Indicator Factsheet: Ecosystem Services

 ^[41] Water Erosion avoided due to small scale structures in arable land: Difference in calculated erosion (modified Universal Soil Loss Equation (USLE)) between a situation without small scale structures and a a situation where erosive slope length is reduced by small scale structures 	t * ha ⁻¹ * yr ⁻¹	<u>ہ</u> , ش
^[40] Percentage of soil cover in cropland (conservation tillage (low tillage), zero tillage, winter crops, cover crop or intermediate crop, plant residues)	%	\otimes
^[40] Density of hedgerows	Not specified	\otimes
^[40] Percentage of grassland cover	%	\otimes
^[41] Share of organic cultivation in a federal state's arable land	%	Þ, á
^[39] Expert assessment of erosion control for each land use class	very negative (–3) to very positive (+3)	-

Table 5: Multinational Scale

Indicator	Unit	Indicator values from
^[42] Erosion regulation: values assigned for Corine land cover classes, based on values published by Burkhard et al. (2009; DOI: 10.3097/LO.200915) and modified for the context of riparian zones.	Index 0 - 5	.

References

No.	Citation
1 ^{8*}	Fagerholm N, Torralba M, Burgess PJ, Plieninger T (2016) A systematic map of ecosystem
	services assessments around European agroforestry. Ecological Indicators 62: 47-65. DOI:
	10.1016/j.ecolind.2015.11.016
2*	Tang LL, Hayashi K, Kohyama K, Leon A (2018) Reconciling Life Cycle Environmental Impacts
	with Ecosystem Services: A Management Perspective on Agricultural Land Use. Sustainability
	10(3): 630. DOI: 10.3390/su10030630
3	Kearney SP, Fonte SJ, García E, Siles P, Chan KMA, Smukler SM (2019) Evaluating ecosystem
	service trade-offs and synergies from slash-and-mulch agroforestry systems in El Salvador.
	Ecological Indicators 105: 264-278. DOI: 10.1016/j.ecolind.2017.08.032
4	Syswerda SP, Robertson GP (2014) Ecosystem services along a management gradient in
	Michigan (USA) cropping systems. Agriculture Ecosystems & Environment 189: 28-35. DOI:
	10.1016/j.agee.2014.03.006

^{8*} The impact area discussed on this factsheet is not a focus of the cited paper

-

No.	Citation
5*	Tsonkova P, Bohm C, Quinkenstein A, Freese D (2015) Application of partial order ranking to
	identify enhancement potentials for the provision of selected ecosystem services by different
	land use strategies. Agricultural Systems 135: 112-121. DOI: 10.1016/j.agsy.2015.01.002
6	Tsonkova P, Quinkenstein A, Bohm C, Freese D, Schaller E (2014) Ecosystem services
	assessment tool for agroforestry (ESAT-A): An approach to assess selected ecosystem services
	provided by alley cropping systems. Ecological Indicators 45: 285-299. DOI:
	10.1016/j.ecolind.2014.04.024
7	Daryanto S, Fu B, Zhao W (2019) Evaluating the use of fire to control shrub encroachment in
	global drylands: A synthesis based on ecosystem service perspective. Science of the Total
	Environment 648: 285-292. DOI: 10.1016/j.scitotenv.2018.08.140
8	Daryanto S, Fu BJ, Wang LX, Jacinthe PA, Zhao WW (2018) Quantitative synthesis on the
	ecosystem services of cover crops. Earth-Science Reviews 185: 357-373. DOI:
	10.1016/j.earscirev.2018.06.013
9	Qiu JX, Carpenter SR, Booth EG, Motew M, Zipper SC, Kucharik CJ, Loheide SP, Turner AG
	(2018) Understanding relationships among ecosystem services across spatial scales and over
	time. Environmental Research Letters 13(5): 054020. DOI: 10.1088/1748-9326/aabb87
10*	Quinn JE, Brandle JR, Johnson RJ (2013) A farm-scale biodiversity and ecosystem services
	assessment tool: the healthy farm index. International Journal of Agricultural Sustainability
	11(2): 176-192. DOI: 10.1080/14735903.2012.726854
11*	Solen LC, Nicolas J, de Sartre Xavier A, Thibaud D, Simon D, Michel G, Johan O (2018) Impacts
	of Agricultural Practices and Individual Life Characteristics on Ecosystem Services: A Case
	Study on Family Farmers in the Context of an Amazonian Pioneer Front. Environmental
	Management 61(5): 772-785. DOI: 10.1007/s00267-018-1004-y
12	Fleming WM, Rivera JA, Miller A, Piccarello M (2014) Ecosystem services of traditional
	irrigation systems in northern New Mexico, USA. International Journal of Biodiversity Science,
	Ecosystem Services and Management 10(4): 343-350. DOI: 10.1080/21513732.2014.977953
13	Baro F, Gomez-Baggethun E, Haase D (2017) Ecosystem service bundles along the urban-rural
	gradient: Insights for landscape planning and management. Ecosystem Services 24: 147-159.
	DOI: 10.1016/j.ecoser.2017.02.021
14*	Fürst C, Frank S, Witt A, Koschke L, Makeschin F (2013) Assessment of the effects of forest
	land use strategies on the provision of ecosystem services at regional scale. Journal of
	Environmental Management 127: 96-116. DOI: 10.1016/j.jenvman.2012.09.020
15	Guerra CA, Metzger MJ, Maes J, Pinto-Correia T (2016) Policy impacts on regulating ecosystem
	services: looking at the implications of 60 years of landscape change on soil erosion
	prevention in a Mediterranean silvo-pastoral system. Landscape Ecology 31(2): 271-290. DOI:
	10.1007/s10980-015-0241-1
16	Holmberg M, Akujarvi A, Anttila S, Arvola L, Bergstrom I, Bottcher K, Feng XM, Forsius M,
	Huttunen I, Huttunen M, Laine Y, Lehtonen H, Liski J, Mononen L, Rankinen K, Repo A,
	Piirainen V, Vanhala P, Vihervaara P (2015) ESLab application to a boreal watershed in
	southern Finland: preparing for a virtual research environment of ecosystem services.
	Landscape Ecology 30(3): 561-577. DOI: 10.1007/s10980-014-0122-z
17	Koschke L, Furst C, Lorenz M, Witt A, Frank S, Makeschin F (2013) The integration of crop
	rotation and tillage practices in the assessment of ecosystem services provision at the regional
	scale. Ecological Indicators 32: 157-171. DOI: 10.1016/j.ecolind.2013.03.008
18	Ma FJ, Eneji AE, Liu JT (2014) Understanding Relationships among Agro-Ecosystem Services
	Based on Emergy Analysis in Luancheng County, North China. Sustainability 6(12): 8700-8719.
	DOI: 10.3390/su6128700

No.	Citation
19	Meyer MA, Chand T, Priess JA (2015) Comparing Bioenergy Production Sites in the
	Southeastern US Regarding Ecosystem Service Supply and Demand. Plos One 10(3): e0116336.
	DOI: 10.1371/journal.pone.0116336
20	Nordborg M, Sasu-Boakye Y, Cederberg C, Berndes G (2017) Challenges in developing
	regionalized characterization factors in land use impact assessment: impacts on ecosystem
	services in case studies of animal protein production in Sweden. International Journal of Life
	Cycle Assessment 22(3): 328-345. DOI: 10.1007/s11367-016-1158-x
21*	Zhang ZM, Gao JF, Fan XY, Lan Y, Zhao MS (2017) Response of ecosystem services to
	socioeconomic development in the Yangtze River Basin. China. Ecological Indicators 72: 481-
	493. DOI: 10.1016/i.ecolind.2016.08.035
22	Bastian O. Lupp G. Syrbe RU. Steinháußer R (2013) Ecosystem services and energy crops -
	Spatial differentiation of risks. Ekologia Bratislava 32(1): 13-29. DOI: 10.2478/eko-2013-0002
23	Früh-Müller A. Hotes S. Breuer L. Wolters V. Koellner T (2016) Regional patterns of ecosystem
	services in cultural landscapes. Land 5(2): 17. DOI: 10.3390/land5020017
24	Rodríguez-Loinaz G. Alday IG. Onaindia M (2015) Multiple ecosystem services landscape
	index: A tool for multifunctional landscapes conservation. Journal of Environmental
	Management 147: 152-163, DOI: 10.1016/i jenyman 2014.09.001
25	VigLLE Tasser E. Schirpke II. Tappeiner II (2017) Using land use/land cover trajectories to
	uncover ecosystem service patterns across the Alps. Regional Environmental Change 17(8):
	2237-2250 DOI: 10.1007/s10113-017-1132-6
26	Adhikari S. Baral H. Nitschke CR (2018) Identification. Prioritization and Manning of Ecosystem
20	Services in the Panchase Mountain Ecological Region of Western Nenal Forests 9(9): 554 DOI:
	10.3390/f9090554
27	Baude M. Meyer BC. Schindewolf M (2019) Land use change in an agricultural landscape
-/	causing degradation of soil based ecosystem services. Science of the Total Environment 659:
	1526-1536. DOI: 10.1016/i.scitoteny.2018.12.455
28	Dang KB. Burkhard B. Muller F. Dang VB (2018) Modelling and mapping natural hazard
	regulating ecosystem services in Sapa, Lao Cai province. Vietnam, Paddy and Water
	Environment 16(4): 767-781. DOI: 10.1007/s10333-018-0667-6
29	Hug N. Bruns A. Ribbe L (2019) Interactions between freshwater ecosystem services and land
	cover changes in southern Bangladesh: A perspective from short-term (seasonal) and long-
	term (1973-2014) scale. Science of the Total Environment 650: 132-143. DOI:
	10.1016/i.scitotenv.2018.08.430
30	Inkoom JN, Frank S, Greve K, Furst C (2018) A framework to assess landscape structural
	capacity to provide regulating ecosystem services in West Africa. Journal of Environmental
	Management 209: 393-408. DOI: 10.1016/j.jenvman.2017.12.027
31	Kay S, Crous-Duran J, García de Jalón S, Graves A, Palma JHN, Roces-Díaz JV, Szerencsits E,
	Weibel R, Herzog F (2018) Landscape-scale modelling of agroforestry ecosystems services in
	Swiss orchards: a methodological approach. Landscape Ecology 33(9): 1633-1644. DOI:
	10.1007/s10980-018-0691-3
32	Koo H, Kleemann J, Fürst C (2018) Land use scenario modeling based on local knowledge for
	the provision of ecosystem services in northern Ghana. Land 7(2): 59. DOI:
	10.3390/land7020059
33	Li T, Lü Y, Fu B, Hu W, Comber AJ (2019) Bundling ecosystem services for detecting their
	interactions driven by large-scale vegetation restoration: enhanced services while depressed
	synergies. Ecological Indicators 99: 332-342. DOI: 10.1016/i.ecolind.2018.12.041

-

No.	Citation
34	Peng J, Tian L, Liu Y, Zhao M, Hu Y, Wu J (2017) Ecosystem services response to urbanization in
	metropolitan areas: Thresholds identification. Science of the Total Environment 607-608: 706-
	714. DOI: 10.1016/j.scitotenv.2017.06.218
35	Pham HV, Torresan S, Critto A, Marcomini A (2019) Alteration of freshwater ecosystem
	services under global change - A review focusing on the Po River basin (Italy) and the Red
	River basin (Vietnam). Science of the Total Environment 652: 1347-1365. DOI:
	10.1016/j.scitotenv.2018.10.303
36	Kay S, Crous-Duran J, Ferreiro-Domínguez N, García de Jalón S, Graves A, Moreno G,
	Mosquera-Losada MR, Palma JHN, Roces-Díaz JV, Santiago-Freijanes JJ, Szerencsits E, Weibel
	R, Herzog F (2018) Spatial similarities between European agroforestry systems and ecosystem
	services at the landscape scale. Agroforestry Systems 92(4): 1075-1089. DOI: 10.1007/s10457-
	017-0132-3
37	Barral MP, Oscar MN (2012) Land-use planning based on ecosystem service assessment: A
	case study in the Southeast Pampas of Argentina. Agriculture, Ecosystems and Environment
	154: 34-43. DOI: 10.1016/j.agee.2011.07.010
38	Schulp CJE, Van Teeffelen AJA, Tucker G, Verburg PH (2016) A quantitative assessment of
	policy options for no net loss of biodiversity and ecosystem services in the European Union.
	Land Use Policy 57: 151-163. DOI: 10.1016/j.landusepol.2016.05.018
39	Helfenstein J, Kienast F (2014) Ecosystem service state and trends at the regional to national
	level: A rapid assessment. Ecological Indicators 36: 11-18. DOI: 10.1016/j.ecolind.2013.06.031
40	Maes J, Liquete C, Teller A, Erhard M, Paracchini ML, Barredo JI, Grizzetti B, Cardoso A, Somma
	F, Petersen JE, Meiner A, Gelabert ER, Zal N, Kristensen P, Bastrup-Birk A, Biala K, Piroddi C,
	Egoh B, Degeorges P, Fiorina C, Santos-Martín F, Naruševičius V, Verboven J, Pereira HM,
	Bengtsson J, Gocheva K, Marta-Pedroso C, Snäll T, Estreguil C, San-Miguel-Ayanz J, Pérez-Soba
	M, Grêt-Regamey A, Lillebø AI, Malak DA, Condé S, Moen J, Czúcz B, Drakou EG, Zulian G,
	Lavalle C (2016) An indicator framework for assessing ecosystem services in support of the EU
	Biodiversity Strategy to 2020. Ecosystem Services 17: 14-23. DOI:
	10.1016/j.ecoser.2015.10.023
41	Syrbe RU, Schorcht M, Grunewald K, Meinel G (2018) Indicators for a nationwide monitoring
	of ecosystem services in Germany exemplified by the mitigation of soil erosion by water.
	Ecological Indicators 94: 46-54. DOI: 10.1016/j.ecolind.2017.05.035
42	Clerici N, Paracchini ML, Maes J (2014) Land-cover change dynamics and insights into
	ecosystem services in European stream riparian zones. Ecohydrology and Hydrobiology 14(2):
	107-120. DOI: 10.1016/j.ecohyd.2014.01.002
43	Gasparatos A, Romeu-Dalmau C, von Maltitz GP, Johnson FX, Shackleton C, Jarzebski MP,
	Jumbe C, Ochieng C, Mudombi S, Nyambane A, Willis K (2018) Mechanisms and indicators for
	assessing the impact of biofuel feedstock production on ecosystem services. Biomass &
	Bioenergy 114: 157-173. DOI: 10.1016/j.biombioe.2018.01.024