

Ecosystem Service	Biotic filtration, sequestration and storage of
	waste
CICES class name	Filtration/sequestration/storage/accumulation by micro-
	organisms, algae, plants, and animals
CICES Section	Regulation & Maintenance (Biotic)
CICES Class code	2.1.1.2

Brief Description:

- Filtering organic or inorganic substances from water or air, including filtering fertilizers and pesticides from water through the soil matrix
- The fixing storage of an organic or inorganic substance by plants, animals, bacteria, fungi or algae that mitigates its harmful effects and reduces the costs of disposal by other means

Sample Indicators

Indicator values from			
Experiment or direct measurement	B	Survey	
Expert assessment	.	Statistical- or census data	
Model or GIS	Ł	Literature values	
Stakeholder participation		Not provided	\oslash

Table 1: Field Scale

Indicator	Unit	Indicator values from
 ^[1] Filtering and buffering: -Soil organic carbon [%] -Acetate esterase enzyme activity [not provided] -Bulk density [g * cm⁻³] -Basal soil respiration [mg CO₂ * g⁻¹] 	Not provided	0
^[3] Soil carbon (0-100cm)	kg C * m ⁻²	B
^[2] Natural attenuation/ clean groundwater: Indicator value calculated as: $I = \frac{\sum \log(\frac{i}{i_{max}}) }{n}$	-	<u>s</u> , m

With: I – Indicator value, i – variable i measured, i _{max} – maximum ecologic potential of variable i in benchmark reference, n – number of variables		
Where performance is considered better than in the		
benchmark and deviation, therefore, has a positive effect,		
$ log(\frac{i}{i_{max}}) $ subtracted from the sum instead of added. For		
this ES, variables were:		
-Soil organic matter [% dw]		
-Bacterial biomass [mg C *g dw ⁻¹]		
-pH in KCl		
-Physiological diversity bacteria [bBiolog. CLPP: Hill's slope]		
-Water suluble P (Pw) [mg $* l^{-1}$] and extractable P (PAL) [mg $*$		
kg ⁻¹]		

Table 2: Farm Scale

Indicator	Unit	Indicator values from
^[4] Share of nitrogen retained during water passage between agricultural sub-catchment and sea. Values were scaled [0-1]	%	<u>~</u>
^[4] Share of farmers that express clearly a value and care for the health of the land. Values were scaled to [0-1]	%	Ţ

Table 3: Regional Scale

Indicator	Unit	Indicator values from
^[10] Nitrate leaching	kg * ha ⁻¹ * yr ⁻¹	<u>ح</u>
^[5] Nitrogen loss	kt N	<u>ــر</u>
^[8] Risk of nitrate leaching: exchange frequency of the soil water in the root layer. Infiltration rate divided by field capacity	%	Ţ
^[4] Share of nitrogen retained during water passage between agricultural sub-catchment and sea. Values were scaled [0-1]	%	Ţ
^[6] Mechanical filtration capacity: infiltration capacity, calculated as:	cm * d ⁻¹	
$C = soil_{perm} * (1 - s)$		🕮 <i>á</i> Í
With: C – mechanical filtration capacity, soil _{perm} – soil permeability [cm * d ⁻¹], s – share of anthropogenic surface sealing		,

cmol(+) * kg dm ⁻¹	
	n 1
	۵۵ _,
%	\otimes
%	<u>ل</u> ر
Index 0 - 5	Ţ
-	<u></u>
-	Ţ
m ³ / (km ² * year)	\otimes
ton/ (km ² * year)	\otimes
n/a	\otimes
	% % Index 0 - 5 - - m ³ / (km ² * year) ton/ (km ² * year)

Table 4: Multinational Scale

Indicator	Unit	Indicator values from
^[12] Nutrient regulation: Values were assigend for Corine land cover classes, based on values published by Burkhard et al. (2009; DOI: 10.3097/LO.200915) and modified for the context of riparian zones.	Index 0 - 5	2

References

No.	Citation
17*	Ferrarini A, Bini C, Amaducci S (2017) Soil and ecosystem services: Current knowledge and evidences from Italian case studies. Applied Soil Ecology 123: 693-698. DOI: 10.1016/j.apsoil.2017.06.031
2	Rutgers M, van Wijnen HJ, Schouten AJ, Mulder C, Kuiten AMP, Brussaard L, Breure AM (2012) A method to assess ecosystem services developed from soil attributes with stakeholders and data of four arable farms. Science of the Total Environment 415: 39-48. DOI: 10.1016/j.scitotenv.2011.04.041
3	Syswerda SP, Robertson GP (2014) Ecosystem services along a management gradient in Michigan (USA) cropping systems. Agriculture Ecosystems & Environment 189: 28-35. DOI: 10.1016/j.agee.2014.03.006
4	Andersson E, Nykvist B, Malinga R, Jaramillo F, Lindborg R (2015) A social–ecological analysis of ecosystem services in two different farming systems. Ambio 44(1): 102-112. DOI: 10.1007/s13280-014-0603-y
5	Huber R, Lehmann B (2010) Economies of Scope in the Agricultural Provision of Ecosystem Services: An Application to a High-Cost Production Region. German Journal of Agricultural Economics 59(2): 91-105.
6	Nordborg M, Sasu-Boakye Y, Cederberg C, Berndes G (2017) Challenges in developing regionalized characterization factors in land use impact assessment: impacts on ecosystem services in case studies of animal protein production in Sweden. International Journal of Life Cycle Assessment 22(3): 328-345. DOI: 10.1007/s11367-016-1158-x
7*	Zhang ZM, Gao JF, Fan XY, Lan Y, Zhao MS (2017) Response of ecosystem services to socioeconomic development in the Yangtze River Basin, China. Ecological Indicators 72: 481-493. DOI: 10.1016/j.ecolind.2016.08.035
8	Bastian O, Lupp G, Syrbe RU, Steinháußer R (2013) Ecosystem services and energy crops - Spatial differentiation of risks. Ekologia Bratislava 32(1): 13-29. DOI: 10.2478/eko-2013-0002
9	Rodríguez-Loinaz G, Alday JG, Onaindia M (2015) Multiple ecosystem services landscape index: A tool for multifunctional landscapes conservation. Journal of Environmental Management 147: 152-163. DOI: 10.1016/j.jenvman.2014.09.001
10	Kay S, Crous-Duran J, Ferreiro-Domínguez N, García de Jalón S, Graves A, Moreno G, Mosquera-Losada MR, Palma JHN, Roces-Díaz JV, Santiago-Freijanes JJ, Szerencsits E, Weibel R, Herzog F (2018) Spatial similarities between European agroforestry systems and ecosystem services at the landscape scale. Agroforestry Systems 92(4): 1075-1089. DOI: 10.1007/s10457-017-0132-3
11	Barral MP, Oscar MN (2012) Land-use planning based on ecosystem service assessment: A case study in the Southeast Pampas of Argentina. Agriculture, Ecosystems and Environment 154: 34-43. DOI: 10.1016/j.agee.2011.07.010
12	Clerici N, Paracchini ML, Maes J (2014) Land-cover change dynamics and insights into ecosystem services in European stream riparian zones. Ecohydrology and Hydrobiology 14(2): 107-120. DOI: 10.1016/j.ecohyd.2014.01.002
13	Gasparatos A, Romeu-Dalmau C, von Maltitz GP, Johnson FX, Shackleton C, Jarzebski MP, Jumbe C, Ochieng C, Mudombi S, Nyambane A, Willis K (2018) Mechanisms and indicators for assessing the impact of biofuel feedstock production on ecosystem services. Biomass & Bioenergy 114: 157-173. DOI: 10.1016/j.biombioe.2018.01.024

^{7*} The impact area discussed on this factsheet is not a focus of the cited paper

Impact Area & Indicator Factsheet: Ecosystem Services

No.	Citation
14	Groot JCJ, Yalew SG, Rossing WAH (2018) Exploring ecosystem services trade-offs in
	agricultural landscapes with a multi-objective programming approach. Landscape and Urban
	Planning 172: 29-36. DOI: 10.1016/j.landurbplan.2017.12.008