

Short name	Cultivated terrestrial plants for nutrition
CICES class name	Cultivated terrestrial plants (including fungi, algae) grown for nutritional purposes
CICES Section	Provisioning (Biotic)
CICES Class code	1.1.1.1

Brief Description

- Any crops and fruits grown for consumption by humans; food crops
- The ecological contribution to the growth of cultivated, land-based crops that can be harvested and used as raw material to produce food
- Does not include fodder and feed crops

Sample Indicators

Indicator values from			
Experiment or direct measurement	ß	Survey	ල්)>==
Expert assessment	•	Statistical- or census data	áÓ
Model or GIS	ل	Literature values	
Stakeholder participation	₩% €	Not provided	\bigcirc

Table 1: Field Scale

Indicator	Unit	Indicator values from
^[35, 48] Yield	Not provided	$\otimes_{,}$
^[49] Yield	Mg * ha ⁻¹	<mark>ـر</mark>
^[13] Yield	kg * ha ⁻¹ * yr ⁻¹	T
^[26, 27] Yield	Mg * ha ⁻¹	ि
^[1, 23] Grain yield	Mg * ha ⁻¹ * yr ⁻¹	<u>B</u>

^[38] Yield (maize, beans)	kg * ha ⁻¹ *	ß
	harvest ⁻¹	<u>B</u>
^[59] Annual total crop yield (corn, soybean, wheat)	bushel * acre ⁻¹	<u>۳</u>
^[37] Production of food	kg fresh weigh * m ⁻² * yr ⁻¹	B
^[1] Average grain yield over the last 50 years, applying a factor to account for changes in technology over time	t * ha ⁻¹	B
^[62] Total grass yield	t * ha ⁻¹	<u>B</u>
^[47] Forage: herbaceous biomass production	Not provided	
^[47] Forage: herbaceous biomass cover	Not provided	
^[59] Annual total forage crops and perennial grass yield (alfalfa, hay, pasture)	kg * ha ⁻¹	لل م
^[13] Production value of crop-pasture sequence	\$ * ha ⁻¹ * yr ⁻¹	<u>ل</u> ر
^[45] Yield potential: Effect of organic and conventional farming are accounted for by using residuals of crop yields (after fitting farming system (conventional or organic) to yield quantities in t ha-1, instead of reported yields.	t * ha ⁻¹	년
^[61] Biotic production	kg * m ⁻² * yr ⁻¹	
^[24] Plant dry biomass per experimental pot	g	B
^[61] Net primary production (NPP)	kg dm * m ⁻² * yr ⁻	
^[35] Land equivalent ratio	Not provided	Ø, 🕮
^[33] Fruit yield	Mg * ha ⁻¹	, C
^[38] Fruit yield	# * ha ⁻¹ * harvest ⁻¹	ß
^[2] Coffee: number of fruiting nodes per hectare	# * ha ⁻¹	B
^[46] Grape yield: bunches per vine	#	<u>\$</u>

^[46] Grape yield: bunch weight	g	\$
^[46] Grape yield: yield per vine	kg	<u>\$</u>
^[46] Grape yield: 100 berries weight	g	
^[35] Quality: Level of mycotoxins in crops	Not provided	Ø, 🕮
^[37] Concentration of trace metal elements relative to food quality standards	mg * kg of fresh matter ⁻¹	B
^[35] Percentage of polyunsaturated fatty acids in milk from cows (for fodder quality)	Not provided	$O_{,}$
^[62] Total crude protein in yield	t * ha ⁻¹	<u>s</u> , m
^[1] Grain protein content (winter wheat)	%	4
^[62] Crude protein concentration in grass yield (first cut, regrowth)	%	<u>\$</u> ,
^[33] Fruit quality: Fruit mass	g	$\otimes_{\mathcal{A}}$
^[33] Fruit quality: Fruit size	mm	$\otimes_{\mathcal{A}}$
^[33] Fruit quality: Fruit colour grade	Not provided	\bigcirc
^[33] Fruit quality: Titratable acidity	% of malic acid	©, □
^[33] Fruit quality: Soluble solids concentration	%	$O_{,}$
^[33] Fruit quality: Firmness	Newton or kg * cm ⁻²	\bigcirc
^[46] Grape quality: total soluble solids (sugar)	°Вх	B
^[46] Grape quality: titratable acidity	g * l ⁻¹	3
^[46] Grape quality	рН [-]	B
^[49] Mean individual fresh fruit mass (quality criterion for the market)	g * fruit ⁻¹	ل ر

 ^[42] Combination of the following indicators to assess relative economic benefits of Forage Production: Site quality: animal units supported per month and hectare, scaled to [0 -1] Site opportunity: distance to markets, scaled to [0 -1] Complimentary inputs: availability of water sources, scaled to [0 -1] Reliability: Risk of future service loss through urban development within a 3-mile radius, scaled to [0 -1] 		₽ <u>`</u> , ₽
^[45] Use of bundles of indicator species that indicate agricultural landscapes with high value for crop yields identified for a certain region. Species may belong to different taxonomic groups	Not provided	()
^[67] Net primary productivity (NPP): average of total above and below ground dry mass at harvest over a 30-years simulation period	Mg / hectare * year)	ير ۲
^[68] Cropland yield	tons/hectare	B
^[68] 1000-grain weight	g	B

Table 2: Farm Scale

Indicator	Unit	Indicator values from
^[20] Index for average yield of common crops (e.g. corn, soybean and wheat). The index is calculated by dividing the observed value by a target value. Target values may be average or maximum values found in the region or empirical values from the literature. If the calculated index is higher than 1, it is set to one.	Index 0-1	ب <mark>ہ</mark> آ
^[20] Index for alternate income opportunities provided by speciality (food) products. The index is calculated by dividing the observed value by a target value. Target values may be average or maximum values found in the region or empirical values from the literature. If the calculated index is higher than 1, it is set to one.	Index 0-1	<u>ر</u>
^[29] Accessibility: Share of land surface within 100 meters from road. Values were scaled [0-1]	%	<mark>ــ</mark>
^[29] Share of farmers with the expressed motivation of achieving a high economic value of the farm that indicates their production intensity. Values were scaled to [0-1]	%	لر
^[29] Crop yield	t * ha ⁻¹ * yr ⁻¹	<u>م</u> ر

^[45] Yield potential: Effect of organic and conventional farming are accounted for by using residuals of crop yields (after fitting farming system (conventional or organic) to yield quantities in t * ha ⁻¹ , instead of reported yields.	t * ha ⁻¹	
^[45] Use of bundles of indicator species that indicate agricultural landscapes with high value for crop yields identified for a certain region. Species may belong to different taxonomic groups.	Not provided	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
^[56] Forage provision by pastures: calculated by a formula derived from expert assessment. Experts determined maximal DM yield, the selected up to 7 variables relevant for yield levels (soil pH, mean depth of a soil series, soil type, amount of phosphorous fertilizer applied, amount of lime applied, irrigation, altitude) and weighed them according to their importance.	t dm * ha ⁻¹ *a ⁻¹	••• •

Table 3: Regional Scale

Indicator	Unit	Indicator values from
^[3] Production of edible crops	kg * ha ⁻¹ * yr ⁻¹	<u>íí</u> , þ
^[6] Food and fodder from plants	t * ha ⁻¹ * yr ⁻¹	•
^[10] Food crops output per unit sown area	kg * ha ⁻¹	<u>áÓ</u>
^[52] Average annual yield of all food crops in the region	t * ha ⁻¹	<u>áÓ</u>
^[51] Food production value: expert based index for ES provision by land cover class [1-5] multiplied by the area of land cover class [km ²] and literature-based monetary value of ES	\$ * ha ⁻¹ * yr ⁻¹	▶, @), ▶
^[51] Food production: expert based index for ES provision by land cover class [1-5] multiplied by the area of land cover class [km ²]	Index 1-5 * km ⁻²	
^[55] Grain production: total yield of rice, wheat, corn and soy	t * ha ⁻¹	<u>íÓÍ</u>
^[58] Grain output: total grain output from statistics, spatial allocation to grid cells of cultivated land based on the ratio of the cells' NDVI value relative to the NDVI of all cultivated land	t * area ⁻¹ *yr ⁻¹	<u>, F</u>
^[59] Annual total crop yield (corn, soybean, wheat)	bushel * acre ⁻¹	<u>ح</u>
^[5] Average yield	kg * ha ⁻¹	áÍ

^[12] Yield	kg * ha ⁻¹ * yr ⁻¹	<u>م</u> ر
^[12] Agricultural harvest/yield	100 kg grain equivalent unit (GEU) * ha ⁻¹ *yr ⁻¹	<u>ح</u> ر
^[43] Agricultural yields	t * ha ⁻¹	ک] ∰ (۲)
^[41] Agricultural production; values were normalized [0-1] using benchmark values where available and observed values otherwise.	t * ha ⁻¹	\otimes
^[60] Total crop production per area (including agricultural and non-agricultural areas)	t * ha ⁻¹ * yr ⁻¹	<u>íl</u>
^[28] Crop production: values assigned are based on the land cover class. The matrix defined by Burkhard et al., 2012 (DOI:10.1016/j.ecolind.2011.06.019) is adapted to the GlobCover dataset and used in this study.	Index 0-5	ب ر
^[29] Crop yield (autumn wheat). Values were scaled [0-1]	t * ha ⁻¹ * yr ⁻¹	<u>ل</u>
^[44] Winter wheat yields	t * ha ⁻¹	□ , áĺ
^[55] Oil crop production: oil yield	t * ha⁻¹	<u>íð</u>
^[25] Amount of forage	Mg dm * ha ⁻¹	, T
^[59] Annual total forage crops and perennial grass yield (alfalfa, hay, pasture)	kg * ha ⁻¹	ل ر م
^[15] Feed: Percentage of the area used for grazing	%	ل
^[28] Fodder production: values assigned are based on land cover class. The matrix defined by Burkhard et al., 2012 (DOI:10.1016/j.ecolind.2011.06.019) is adapted and used in this study.	Index 0-5	<mark>ــ</mark>
^[40] Fodder quantity: Above-ground biomass in mown grasslands	Not specified	لر
^[40] Fodder quantity: Sward height	Not specified	Ţ
^[40] Fodder quality: Lower Leaf tensile strength (Feed quality)	Not specified	لا ر
^[40] Fodder quality: Abundance of legumes	Not specified	٩
^[40] Fodder quality: Leaf crude protein content	Not specified	4

^[11] Total biomass production on agricultural land	t DM	2
^[53] Annual biomass yield	t DM * ha ⁻¹ * yr ⁻¹	P, 11
^[53] Biomass stock in the landscape (crops and trees) at any one time	t DM * ha ⁻¹	Þ, á
^[14] Sum of arable land cells (GIS: 10m x 10m cells) within the two highest soil fertility classes	m ²	Ţ
^[21] Share of arable land use within a region	%	Ţ
^[43] Acreage of farmland	ha	بي بي آ
^[50] Food production potential: total farmland area	ha * grid cell ⁻¹	Ţ
^[31] Yield potential	1: very low - 5: very high	لَّ
^[45] Yield potential: Effect of organic and conventional farming are accounted for by using residuals of crop yields (after fitting farming system (conventional or organic) to yield quantities in t ha-1), instead of reported yields.	t * ha ⁻¹	
^[36] Soil fertility of arable fields: index based on water holding capacity, soil moisture and carbonate content.	Index 1-5	ر گ
^[4] Area of agricultural ecosystems under sustainable management	Not provided	\otimes
^[4] Organic farming	Not provided	\otimes
^[7] Market value of products per hectare	\$ * ha ⁻¹ * yr ⁻¹	<u>íÓÍ</u>
^[10] Gross farming output value per rural chemical fertilizer use	\$ * kg ⁻¹	<u>áÓÍ</u>
^[10] Agricultural labor productivity [monetary agricultural output value/ agricultural labourer]	\$ * capita ⁻¹	۵Ó
^[19] Gross output of agricultural production (crops & livestock)	\$ * ha ⁻¹ * yr ⁻¹	, ^(*)
^[19] Net margin of agricultural production (including subsidies)	\$ * ha ⁻¹ * yr ⁻¹	, ^(*)

^[25] (Historical Analysis) Value of production: Sum of working hours needed to buy basic agric. commodities of 1 ha of land	h * ha-1	, ⁽¹⁾
^[29] Accessibility: Share of land surface within 100 meters from road that affects the level of agricultural production intensity. Values were scaled [0-1]	%	<u>r</u>
^[16] "Energy" of harvested crops	solar equivalent J	áÍ
^[17] Biomass: Energy output from agricultural biomass	MJ * ha ⁻¹	<u>م</u> ر
^[18] Spatial mapping by stakeholders: stakeholders could place green stickers on a map to mark supply hotspots of this ecosystem service. Red stickers were used to mark locations where the supply of this service is declining. Two different sizes of stickers were used to represent a radius of 0.75 km or 1 km, respectively.	Index 0-5	₩ ₩
^[29] Share of farmers with the expressed motivation of achieving a high economic value of the farm. Values were scaled to [0-1]	%	<u></u>
^[30] Direct goods provision (meat & grain): NPP x H x Qf x 1.5; where NPP: Net primary production (0-1000), H: Harvest index by men (0-1), Qf: quality factor of primary outputs	Not provided	Ţ
^[45] Use of bundles of indicator species that indicate agricultural landscapes with high value for crop yields identified for a certain region. Species may belong to different taxonomic groups.	Not provided	
^[54] Percentage of the products of a land use class that is consumed by households as food	%	
^[54] Percentage of the products of a land use class that is used for animal feed	%	
^[54] Rating of current service provision per land use class by expert-stakeholders	Rating 0-10	(1)
^[54] Rating of increases/decreases of service provision in scenarios, relative to the status quo	%	
^[64] Number of agricultural holdings	[#]	<u>áðÍ</u>
^[64] Utilised agricultural area	[not provided]	<u>áðÍ</u>

^[64] Area of arable land	[not provided]	
^[64] Production quality: agricultural area of PDO and/or PGI farms	[not provided]	á
^[65] Mass of food crops/feed/livestock	tons/ (km² * year)	\otimes
^[65] Calorific value of food crops/feed/livestock	MJ / (km ² * year)	\otimes

Table 4: National Scale

Indicator	Unit	Indicator values from
^[11] Total biomass production on agricultural land	dm t	للل
^[57] Yield	t * district ⁻¹ or	ណ៍
^[39] Yields of food and feed crops	t * hatton	
	t dm * ha ⁻¹ ,	<u>íÓÍ</u>
[no]	MJ * ha ⁻¹	
^[39] Grassland yields	t * ha ⁻¹ ,	្វាំ
	MJ * ha ⁻¹	
^[39] Food and feed crop area	ha	<u>á</u> ĺ
^[39] Grassland area	ha	áÍ
^[21] Share of arable land use within a region	%	<u>-</u>
^[4] Area of agricultural ecosystems under sustainable management	Not provided	\otimes
^[4] Organic farming	Not provided	\otimes
^[8] Expert assessment for each land use, based on the indicators: yield/hectare; light, water, nutrient, warmth availability; disturbances, climate change (units not given)	very negative (-3) to very positive (+3)	2 /
^[9] Summed gross margin of production (area of crop multiplied by the gross margin per unit area)	\$	áð, 🎦

^[34] Historical analysis: Production of "ecosystem service products" in a region: cereal crops, vegetables, hop, wine	Not provided)
^[34] Historical analysis: Occurrence of specific production areas in a region: orchards, orchard meadows, vineyards	Not provided	<u>ب</u> ۲
^[34] Historical analysis: fodder or fodder used in a region: fodder-hay, fodder-oak	Not provided	<u>ک</u> ۲
^[34] Historical analysis: Occurrence of specific livestock feeding system in a region: grazing, grazing/fodder-hay	Not provided	ر الآ ا
^[22] Maximum stocking rate supported by pastures	Livestock units * ha ⁻¹	<u>م</u> ر
^[57] Quality: alpha-diversity of agricultural goods calculated as Pielou's (1969) J-index (evenness index): J = (sum of (P_it * ln(p_it))/ ln (St); where St is the number of crops recorded during year t, while p_it refers to the relative abundance of crop i [based on the crop's yield (weight)] during year t	[-]	வி
^[57] Quality: beta-diversity of agricultural goods calculated as Margalef's (1958) index of diversity (D): D= S-1 / In(N); where S is the number of species, and N represents the total yield (weight)	[-]	வி
^[57] Quality: gamma-diversity calculated from alpha- and beta diversity	[-]	á
^[63] Downscaled crop production: Arable land cover classes are identified from satellite images. National crop production data is then downscaled to the respective land use classes, adjusting for crop cultivation intensity by assigning a weight of 1.25 to intensive of 0.66 to extensive croplands.	t/km²	<u>ک</u> آ
^[63] Fodder production potential: Area of rainfed agricultural land [not provided]	Not provided	á

Table 5: Multinational Scale

Indicator	Unit	Indicator values from
^[17] Biomass: Energy output from agricultural biomass	MJ * ha ⁻¹	<i>₽</i> =
^[32] Crops: values assigned are based on Corine land cover classes. The matrix defined by Burkhard et al. (2009; DOI: 10.3097/LO.200915) was used and modified for the context of riparian zones.	Index 0-5	•
^[32] Fodder: Values assigned are based on Corine land cover classes. The matrix defined by Burkhard et al. (2009; DOI:	Index 0-5	.

10.3097/LO.200915) was used and modified for the context of riparian zones.		
^[21] Share of arable land use within a region	%	٩
^[4] Area of agricultural ecosystems under sustainable management	Not provided	\oslash
^[4] Organic farming	Not provided	\otimes

Table 6: Global Scale

Indicator	Unit	Indicator values from
^[4] Area of agricultural ecosystems under sustainable management	Not provided	\otimes
^[4] Organic farming	Not provided	\otimes
^[66] Yield	ton/km ²	م ر ۲

References

No.	Citation
1	Albizua A, Williams A, Hedlund K, Pascual U (2015) Crop rotations including ley and manure
	can promote ecosystem services in conventional farming systems. Applied Soil Ecology 95:
	54-61. DOI: 10.1016/j.apsoil.2015.06.003
2 ^{1*}	Allinne C, Savary S, Avelino J (2016) Delicate balance between pest and disease injuries, yield
	performance, and other ecosystem services in the complex coffee-based systems of Costa
	Rica. Agriculture Ecosystems & Environment 222: 1-12. DOI: 10.1016/j.agee.2016.02.001
3	Baro F, Gomez-Baggethun E, Haase D (2017) Ecosystem service bundles along the urban-
	rural gradient: Insights for landscape planning and management. Ecosystem Services 24:
4 14	147-159. DOI: 10.1016/j.ecoser.2017.02.021
4*	Feld CK, Sousa JP, da Silva PM, Dawson TP (2010) Indicators for biodiversity and ecosystem
	services: towards an improved framework for ecosystems assessment. Biodiversity and
	Conservation 19(10): 2895-2919. DOI: 10.1007/S10531-010-9875-0
5	land use type in floodplain agroecosystems, Land Use Policy 46: 201-210, DOI:
	10 1016/i Jandusenol 2015 02 003
6*	Fürst C. Frank S. Witt A. Koschke L. Makeschin F (2013) Assessment of the effects of forest
	land use strategies on the provision of ecosystem services at the regional scale. Journal of
	Environmental Management 127: S96-S116. DOI: 10.1016/j.jenvman.2012.09.020
7	Gret-Regamey A, Weibel B, Bagstad KJ, Ferrari M, Geneletti D, Klug H, Schirpke U, Tappeiner
	U (2014) On the Effects of Scale for Ecosystem Services Mapping. Plos One 9(12): e112601.
	DOI: 10.1371/journal.pone.0112601
8	Helfenstein J, Kienast F (2014) Ecosystem service state and trends at the regional to national
	level: A rapid assessment. Ecological Indicators 36: 11-18. DOI:
	10.1016/j.ecolind.2013.06.031
9	Holland RA, Eigenbrod F, Armsworth PR, Anderson BJ, Thomas CD, Heinemeyer A, Gillings S,
	Roy DB, Gaston KJ (2011) Spatial covariation between freshwater and terrestrial ecosystem
10	services. Ecological Applications 21(6): 2034-2048. DOI: 10.1890/09-2195.1
10	How Y, Zhou SD, Burkharda B, Muller F (2014) Socioeconomic influences on biodiversity,
	liangsu China, Science of the Total Environment 490: 1012-1028, DOI:
	10.1016/i.scitotenv.2014.05.071
11	Kirchner M, Schmidt J, Kindermann G, Kulmer V, Mitter H, Prettenthaler F, Rudisser J,
	Schauppenlehner T, Schonhart M, Strauss F, Tappeiner U, Tasser E, Schmid E (2015)
	Ecosystem services and economic development in Austrian agricultural landscapes - The
	impact of policy and climate change scenarios on trade-offs and synergies. Ecological
	Economics 109: 161-174. DOI: 10.1016/j.ecolecon.2014.11.005
12	Koschke L, Furst C, Lorenz M, Witt A, Frank S, Makeschin F (2013) The integration of crop
	rotation and tillage practices in the assessment of ecosystem services provision at the
	regional scale. Ecological Indicators 32: 157-171. DOI: 10.1016/j.ecolind.2013.03.008
13	Kragt ME, Robertson MJ (2014) Quantifying ecosystem services trade-offs from agricultural
	practices. Ecological Economics 102: 14/-15/. DOI: 10.1016/j.ecolecon.2014.04.001
14	Lautenbach S, Kugel C, Lausch A, Seppelt R (2011) Analysis of historic changes in regional
	ecosystem service provisioning using land use data. Ecological Indicators 11(2): 6/6-68/.
	ואסרו: 10.1012/j.ecolina.2010.09.007

 $[\]ensuremath{^1^*}$ The ecosystem service discussed on this factsheet is not a focus of the cited paper

No.	Citation
15	Liu S, Crossman ND, Nolan M, Ghirmay H (2013) Bringing ecosystem services into integrated
	water resources management. Journal of Environmental Management 129: 92-102. DOI:
	10.1016/j.jenvman.2013.06.047
16	Ma FJ, Eneji AE, Liu JT (2014) Understanding Relationships among Agro-Ecosystem Services
	Based on Emergy Analysis in Luancheng County, North China. Sustainability 6(12): 8700-
	8719. DOI: 10.3390/su6128700
17	Mouchet MA, Paracchini ML, Schulp CJE, Sturck J, Verkerk PJ, Verburg PH, Lavorel S (2017)
	Bundles of ecosystem (dis)services and multifunctionality across European landscapes.
	Ecological Indicators 73: 23-28. DOI: 10.1016/j.ecolind.2016.00.026
18	Palomo I, Martin-Lopez B, Zorrilla-Miras P, Del Amo DG, Montes C (2014) Deliberative
	mapping of ecosystem services within and around Donana National Park (SW Spain) in
	relation to land use change. Regional Environmental Change 14(1): 237-251. DOI:
10	10.100//S10113-013-0488-5
19	Postnumus H, Rouquette JR, Morris J, Cowing DJG, Hess TM (2010) A framework for the
	England, Ecological Economics 60/7): 1510, 1522, DOI: 10,1016/j. ecologon 2010,02,011
20 ²	Ouinn IF Brandle IR Johnson RI (2013) A farm-scale biodiversity and ecosystem services
*	assessment tool: the healthy farm index. International Journal of Agricultural Sustainability
	11(2): 176-192 DOI: 10.1080/14735903.2012.726854
21	Schulp CJE. Van Teeffelen AJA. Tucker G. Verburg PH (2016) A quantitative assessment of
	policy options for no net loss of biodiversity and ecosystem services in the European Union.
	Land Use Policy 57: 151-163. DOI: 10.1016/j.landusepol.2016.05.018
22	Schulte RPO, Creamer RE, Donnellan T, Farrelly N, Fealy R, O'Donoghue C, O'HUallachain D
	(2014) Functional land management: A framework for managing soil-based ecosystem
	services for the sustainable intensification of agriculture. Environmental Science & Policy 38:
	45-58. DOI: 10.1016/j.envsci.2013.10.002
23	Syswerda SP, Robertson GP (2014) Ecosystem services along a management gradient in
	Michigan (USA) cropping systems. Agriculture Ecosystems & Environment 189: 28-35. DOI:
24	10.1016/j.agee.2014.03.006
24	Verbruggen E, Kiers ET, Bakelaar PNC, Roling WFM, van der Heijden MGA (2012) Provision of
	contrasting ecosystem services by soil communities from different agricultural fields. Plant
25	Alla Soll SSO(1-2), 45-55, DOI: 10.1007/S11104-011-0828-5
25	uncover ecosystem service patterns across the Alps. Regional Environmental Change 17(8):
	2237-2250. DOI: 10.1007/s10113-017-1132-6
26	Williams A. Hedlund K (2013) Indicators of soil ecosystem services in conventional and
	organic arable fields along a gradient of landscape heterogeneity in southern Sweden.
	Applied Soil Ecology 65: 1-7. DOI: 10.1016/j.apsoil.2012.12.019
27*	Williams A, Hedlund K (2014) Indicators and trade-offs of ecosystem services in agricultural
	soils along a landscape heterogeneity gradient. Applied Soil Ecology 77: 1-8. DOI:
	10.1016/j.apsoil.2014.01.001
28*	Zhang ZM, Gao JF, Fan XY, Lan Y, Zhao MS (2017) Response of ecosystem services to
	socioeconomic development in the Yangtze River Basin, China. Ecological Indicators 72: 481-
	493. DOI: 10.1016/j.ecolind.2016.08.035

 $^{^{\}ensuremath{2^{\ast}}}$ The impact area discussed on this factsheet is not a focus of the cited paper

Impact Area & Indicator Factsheet: Ecosystem Services

No.	Citation
29	Andersson E, Nykvist B, Malinga R, Jaramillo F, Lindborg R (2015) A social-ecological analysis
	of ecosystem services in two different farming systems. Ambio 44(1): 102-112. DOI:
	10.1007/s13280-014-0603-y
30	Barral MP, Oscar MN (2012) Land-use planning based on ecosystem service assessment: A
	case study in the Southeast Pampas of Argentina. Agriculture, Ecosystems and Environment
	154: 34-43. DOI: 10.1016/j.agee.2011.07.010
31	Bastian O, Lupp G, Syrbe RU, Steinháußer R (2013) Ecosystem services and energy crops -
	Spatial differentiation of risks. Ekologia Bratislava 32(1): 13-29. DOI: 10.2478/eko-2013-0002
32	Clerici N, Paracchini ML, Maes J (2014) Land-cover change dynamics and insights into
	ecosystem services in European stream riparian zones. Ecohydrology and Hydrobiology
22	14(2): 107-120. DOI: 10.1016/J.econyd.2014.01.002
33	Demestinas C, Pienet D, Genard IVI, Raynal C, Lescourret F (2017) Ecosystem services in
	orchards. A review. Agronomy for Sustainable Development 37(2): 12. DOI: 10.1007/S13593-
24	Dittrich A von Wohrdon H. Abson DI. Partkowski R. Cord AE. Eust D. Hover C. Kambash S.
54	Meyer MA Radzevičiūtė R. Nieto-Romero M. Sennelt R. Beckmann M. (2017) Manning and
	analysing historical indicators of ecosystem services in Germany, Ecological Indicators 75:
	101-110 DOI: 10.1016/i ecolind 2016.12.010
35*	Duru M. Therond O. Martin G. Martin-Clouaire R. Magne MA. Justes F. Journet FP. Aubertot
	JN. Savary S. Bergez JE. Sarthou JP (2015) How to implement biodiversity-based agriculture
	to enhance ecosystem services: a review. Agronomy for Sustainable Development 35(4):
	1259-1281. DOI: 10.1007/s13593-015-0306-1
36	Früh-Müller A, Hotes S, Breuer L, Wolters V, Koellner T (2016) Regional patterns of
	ecosystem services in cultural landscapes. Land 5(2): 17. DOI: 10.3390/land5020017
37	Grard BJP, Chenu C, Manouchehri N, Houot S, Frascaria-Lacoste N, Aubry C (2018) Rooftop
	farming on urban waste provides many ecosystem services. Agronomy for Sustainable
	Development 38(1): 2. DOI: 10.1007/s13593-017-0474-2
38	Kearney SP, Fonte SJ, García E, Siles P, Chan KMA, Smukler SM (2019) Evaluating ecosystem
	service trade-offs and synergies from slash-and-mulch agroforestry systems in El Salvador.
	Ecological Indicators 105: 264-278. DOI: 10.1016/j.ecolind.2017.08.032
39	Maes J, Liquete C, Teller A, Erhard M, Paracchini ML, Barredo JI, Grizzetti B, Cardoso A,
	Somma F, Petersen JE, Meiner A, Gelabert ER, Zal N, Kristensen P, Bastrup-Birk A, Biala K,
	Piroddi C, Egon B, Degeorges P, Fiorina C, Santos-Martin F, Narusevicius V, Verboven J,
	Pereira Hivi, Bengtsson J, Gocneva K, Marta-Pedroso C, Snail T, Estreguil C, San-Wiguel-Ayanz
	J, Perez-Soba M, Gret-Regamey A, Lillebø AI, Malak DA, Conde S, Moen J, Czucz B, Drakou
	support of the ELL Biodiversity Strategy to 2020. Ecosystem Services 17: 1/-22. DOI:
	10 1016/i ecoser 2015 10 023
40	Ouétier F. Lavorel S. Daigney S. de Chazal I (2009) Assessing ecological and social uncertainty
	in the evaluation of land-use impacts on ecosystem services. Journal of Land Use Science
	4(3): 173-199. DOI: 10.1080/17474230903036667
41	Rodríguez-Loinaz G, Alday JG, Onaindia M (2014) Multiple ecosystem services landscape
	index: A tool for multifunctional landscapes conservation. Journal of Environmental
	Management 147: 152-163. DOI: 10.1016/j.jenvman.2014.09.001
42	Wainger LA, King DM, Mack RN, Price EW, Maslin T (2010) Can the concept of ecosystem
	services be practically applied to improve natural resource management decisions?
	Ecological Economics 69(5): 978-987. DOI: 10.1016/j.ecolecon.2009.12.011

No.	Citation
43	Adhikari S, Baral H, Nitschke CR (2018) Identification, Prioritization and Mapping of Ecosystem Services in the Panchase Mountain Ecological Region of Western Nepal. Forests 9(9): 554. DOI: 10.3390/f9090554
44	Baude M, Meyer BC, Schindewolf M (2019) Land use change in an agricultural landscape causing degradation of soil based ecosystem services. Science of the Total Environment 659: 1526-1536. DOI: 10.1016/j.scitotenv.2018.12.455
45	Birkhofer K, Rusch A, Andersson GKS, Bommarco R, Dänhardt J, Ekbom B, Jönsson A, Lindborg R, Olsson O, Rader R, Stjernman M, Williams A, Hedlund K, Smith HG (2018) A framework to identify indicator species for ecosystem services in agricultural landscapes. Ecological Indicators 91: 278-286. DOI: 10.1016/j.ecolind.2018.04.018
46	Costantini EAC, Castaldini M, Diago MP, Giffard B, Lagomarsino A, Schroers HJ, Priori S, Valboa G, Agnelli AE, Akça E, D'Avino L, Fulchin E, Gagnarli E, Kiraz ME, Knapič M, Pelengić R, Pellegrini S, Perria R, Puccioni S, Simoni S, Tangolar S, Tardaguila J, Vignozzi N, Zombardo A (2018) Effects of soil erosion on agro-ecosystem services and soil functions: A multidisciplinary study in nineteen organically farmed European and Turkish vineyards. Journal of Environmental Management 223: 614-624. DOI: 10.1016/j.jenvman.2018.06.065
47	Daryanto S, Fu B, Zhao W (2019) Evaluating the use of fire to control shrub encroachment in global drylands: A synthesis based on ecosystem service perspective. Science of the Total Environment 648: 285-292. DOI: 10.1016/j.scitotenv.2018.08.140
48	Daryanto S, Fu BJ, Wang LX, Jacinthe PA, Zhao WW (2018) Quantitative synthesis on the ecosystem services of cover crops. Earth-Science Reviews 185: 357-373. DOI: 10.1016/j.earscirev.2018.06.013
49	Demestihas C, Plénet D, Génard M, Garcia de Cortazar-Atauri I, Launay M, Ripoche D, Beaudoin N, Simon S, Charreyron M, Raynal C, Lescourret F (2018) Analyzing ecosystem services in apple orchards using the STICS model. European Journal of Agronomy 94: 108- 119. DOI: 10.1016/j.eja.2018.01.009
50	Hashimoto S, DasGupta R, Kabaya K, Matsui T, Haga C, Saito O, Takeuchi K (2018) Scenario analysis of land-use and ecosystem services of social-ecological landscapes: implications of alternative development pathways under declining population in the Noto Peninsula, Japan. Sustainability Science 14: 53-75. DOI: 10.1007/s11625-018-0626-6
51	Huq N, Bruns A, Ribbe L (2019) Interactions between freshwater ecosystem services and land cover changes in southern Bangladesh: A perspective from short-term (seasonal) and long-term (1973-2014) scale. Science of the Total Environment 650: 132-143. DOI: 10.1016/j.scitotenv.2018.08.430
52	Jaligot R, Chenal J, Bosch M, Hasler S (2019) Historical dynamics of ecosystem services and land management policies in Switzerland. Ecological Indicators 101: 81-90. DOI: 10.1016/j.ecolind.2019.01.007
53	Kay S, Crous-Duran J, García de Jalón S, Graves A, Palma JHN, Roces-Díaz JV, Szerencsits E, Weibel R, Herzog F (2018) Landscape-scale modelling of agroforestry ecosystems services in Swiss orchards: a methodological approach. Landscape Ecology 33(9): 1633-1644. DOI: 10.1007/s10980-018-0691-3
54	Koo H, Kleemann J, Fürst C (2018) Land use scenario modeling based on local knowledge for the provision of ecosystem services in northern Ghana. Land 7(2): 59. DOI: 10.3390/land7020059
55	Li T, Lü Y, Fu B, Hu W, Comber AJ (2019) Bundling ecosystem services for detecting their interactions driven by large-scale vegetation restoration: enhanced services while depressed synergies. Ecological Indicators 99: 332-342. DOI: 10.1016/j.ecolind.2018.12.041

-

No.	Citation
56	Nahuelhual L, Benra F, Laterra P, Marin S, Arriagada R, Jullian C (2018) Patterns of ecosystem
	services supply across farm properties: Implications for ecosystem services-based policy
	incentives. Science of the Total Environment 634: 941-950. DOI:
	10.1016/j.scitotenv.2018.04.042
57	Ohsawa T, Okano T, Nakao F, Kabaya K, Kofuku S, Kikuchi K, Nakashizuka T (2018)
	Underuse/overuse and diversity of provisioning services and their change: the case of the
	Japanese national ecosystem service assessment (JBO2). Sustainability Science: 1-13. DOI:
	10.1007/s11625-018-0531-z
58	Peng J, Tian L, Liu Y, Zhao M, Hu Y, Wu J (2017) Ecosystem services response to urbanization
	in metropolitan areas: Thresholds identification. Science of the Total Environment 607-608:
	706-714. DOI: 10.1016/j.scitotenv.2017.06.218
59	Qiu JX, Carpenter SR, Booth EG, Motew M, Zipper SC, Kucharik CJ, Loheide SP, Turner AG
	(2018) Understanding relationships among ecosystem services across spatial scales and over
	time. Environmental Research Letters 13(5): 054020. DOI: 10.1088/1748-9326/aabb87
60	Santos-Martín F, Zorrilla-Miras P, Palomo-Ruiz I, Montes C, Benayas J, Maes J (2019)
	Protecting nature is necessary but not sufficient for conserving ecosystem services: A
	comprehensive assessment along a gradient of land-use intensity in Spain. Ecosystem
64*	Services 35: 43-51. DUI: 10.1016/J.ecoser.2018.11.006
61*	Tang LL, Hayashi K, Konyama K, Leon A (2018) Reconciling Life Cycle Environmental impacts
	with Ecosystem Services: A Management Perspective on Agricultural Land Use. Sustainability
62	10(3): 630. DOI: 10.3390/S010030630
62	vali vooren L, Reubens B, Broekx S, Reneur D, Verneyen K (2018) Assessing the impact of
	and biodiversity. Agriculture, Ecosystems and Environment 267: 201, 212, DOI:
	10 1016/i agee 2018 08 016
63	Balzan MV. Caruana I. Zammit A (2018) Assessing the canacity and flow of ecosystem
05	services in multifunctional landscapes: Evidence of a rural-urban gradient in a
	Mediterranean small island state. Land Use Policy 75: 711-725. DOI:
	10.1016/i.landusepol.2017.08.025
64	Chatzinikolaou P, Viaggi D, Raggi M (2018) Using the Ecosystem Services Framework for
	Policy Impact Analysis: An Application to the Assessment of the Common Agricultural Policy
	2014-2020 in the Province of Ferrara (Italy). Sustainability 10: 890. DOI:
	10.3390/su10030890.
65	Gasparatos A, Romeu-Dalmau C, von Maltitz GP, Johnson FX, Shackleton C, Jarzebski MP,
	Jumbe C, Ochieng C, Mudombi S, Nyambane A, Willis K (2018) Mechanisms and indicators
	for assessing the impact of biofuel feedstock production on ecosystem services. Biomass &
	Bioenergy 114: 157-173. DOI: 10.1016/j.biombioe.2018.01.024
66	Fridman D, Kissinger M (2018) An integrated biophysical and ecosystem approach as a base
	for ecosystem services analysis across regions. Ecosystem Services 31: 242-254. DOI:
	10.1016/j.ecoser.2018.01.005
67	Nguyen TH, Cook M, Field JL, Khuc QV, Paustian K (2018) High-resolution trade-off analysis
	and optimization of ecosystem services and disservices in agricultural landscapes.
	Environmental Modelling & Software 107: 105-118. DOI: 10.1016/j.envsoft.2018.06.006
68	Van Vooren L, Reubens B, Ampoorter E, Broekx S, Pardon, P, Van Waes C, Verheyen K (2018)
	Monitoring the Impact of Hedgerows and Grass Strips on the Performance of Multiple
	Ecosystem Service Indicators. Environmental Management 62: 241-259.
	DOI:10.1007/s00267-018-1043-4