

| Short name              | Cultivated terrestrial plants for nutrition                      |  |
|-------------------------|------------------------------------------------------------------|--|
| CICES class name        | Cultivated terrestrial plants (including fungi, algae) grown for |  |
|                         | nutritional purposes                                             |  |
| <b>CICES Section</b>    | Provisioning (Biotic)                                            |  |
| <b>CICES Class code</b> | 1.1.1.1                                                          |  |

# **Sample Indicators**

| Indicator values from            |          |                             |      |  |
|----------------------------------|----------|-----------------------------|------|--|
| Experiment or direct measurement | \$       | Survey                      | 1111 |  |
| Expert assessment                | <u>.</u> | Statistical- or census data | á    |  |
| Model or GIS                     | Ţ        | Literature values           |      |  |
| Stakeholder participation        | <b>#</b> | Not provided                | 0    |  |

Table 1: Field Scale

| Indicator                                                                                                                   | Unit                                                   | Indicator values from  |
|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------|
| <sup>[35, 48]</sup> Yield                                                                                                   | Not provided                                           | $\bigcirc$ , $\square$ |
| [49] Yield                                                                                                                  | Mg * ha <sup>-1</sup>                                  | <u>I</u>               |
| [13] Yield                                                                                                                  | kg * ha <sup>-1</sup> * yr <sup>-1</sup>               | Ţ                      |
| <sup>[26, 27]</sup> Yield                                                                                                   | Mg * ha <sup>-1</sup>                                  |                        |
| [1, 23] Grain yield                                                                                                         | Mg * ha <sup>-1</sup> * yr <sup>-1</sup>               | <u>\$</u>              |
| [38] Yield (maize, beans)                                                                                                   | kg * ha <sup>-1</sup> *<br>harvest <sup>-1</sup>       | <u>\$</u>              |
| [59] Annual total crop yield (corn, soybean, wheat)                                                                         | bushel * acre <sup>-1</sup>                            | <u>F</u>               |
| [37] Production of food                                                                                                     | kg fresh weigh *<br>m <sup>-2</sup> * yr <sup>-1</sup> | <u>\$</u>              |
| <sup>[1]</sup> Average grain yield over the last 50 years, applying a factor to account for changes in technology over time | t * ha <sup>-1</sup>                                   | <u>\$</u>              |
| [62] Total grass yield                                                                                                      | t * ha <sup>-1</sup>                                   | <u>\$</u>              |



| [47] Forage: herbaceous biomass production                                                                                                                                                                                              | Not provided                                    |           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------|
| [47] Forage: herbaceous biomass cover                                                                                                                                                                                                   | Not provided                                    |           |
| [59] Annual total forage crops and perennial grass yield (alfalfa, hay, pasture)                                                                                                                                                        | kg * ha <sup>-1</sup>                           | Ţ         |
| [13] Production value of crop-pasture sequence                                                                                                                                                                                          | \$ * ha <sup>-1</sup> * yr <sup>-1</sup>        | <u>F</u>  |
| [45] Yield potential: Effect of organic and conventional farming are accounted for by using residuals of crop yields (after fitting farming system (conventional or organic) to yield quantities in t ha-1, instead of reported yields. | t * ha <sup>-1</sup>                            |           |
| [61] Biotic production                                                                                                                                                                                                                  | kg * m <sup>-2</sup> * yr <sup>-1</sup>         |           |
| [24] Plant dry biomass per experimental pot                                                                                                                                                                                             | g                                               | <u>\$</u> |
| [61] Net primary production (NPP)                                                                                                                                                                                                       | kg dm * m <sup>-2</sup> * yr <sup>-</sup>       |           |
| [35] Land equivalent ratio                                                                                                                                                                                                              | Not provided                                    | 0,0       |
| <sup>[33]</sup> Fruit yield                                                                                                                                                                                                             | Mg * ha <sup>-1</sup>                           | 0,0       |
| [38] Fruit yield                                                                                                                                                                                                                        | # * ha <sup>-1</sup> *<br>harvest <sup>-1</sup> | <u>\$</u> |
| [2] Coffee: number of fruiting nodes per hectare                                                                                                                                                                                        | # * ha <sup>-1</sup>                            | <u>\$</u> |
| [46] Grape yield: bunches per vine                                                                                                                                                                                                      | #                                               | <u>\$</u> |
| [46] Grape yield: bunch weight                                                                                                                                                                                                          | g                                               | <u>\$</u> |
| [46] Grape yield: yield per vine                                                                                                                                                                                                        | kg                                              | <u>\$</u> |
| [46] Grape yield: 100 berries weight                                                                                                                                                                                                    | g                                               | <u>\$</u> |
| [35] Quality: Level of mycotoxins in crops                                                                                                                                                                                              | Not provided                                    | 0,0       |
| [37] Concentration of trace metal elements relative to food quality standards                                                                                                                                                           | mg * kg of fresh<br>matter <sup>-1</sup>        | <u>\$</u> |
| [35] Percentage of polyunsaturated fatty acids in milk from cows (for fodder quality)                                                                                                                                                   | Not provided                                    | 0,0       |



| [62] Total crude protein in yield                                                                                                                                                                                                                                                                                                                                                                                          | t * ha <sup>-1</sup>            | <u>\$</u> , 🖺                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------|
| [1] Grain protein content (winter wheat)                                                                                                                                                                                                                                                                                                                                                                                   | %                               | <u>\$</u>                               |
| [62] Crude protein concentration in grass yield (first cut, regrowth)                                                                                                                                                                                                                                                                                                                                                      | %                               | <u>3</u> , <u>Q</u>                     |
| [33] Fruit quality: Fruit mass                                                                                                                                                                                                                                                                                                                                                                                             | g                               | 0,0                                     |
| [33] Fruit quality: Fruit size                                                                                                                                                                                                                                                                                                                                                                                             | mm                              | 0,0                                     |
| [33] Fruit quality: Fruit colour grade                                                                                                                                                                                                                                                                                                                                                                                     | Not provided                    | 0,0                                     |
| [33] Fruit quality: Titratable acidity                                                                                                                                                                                                                                                                                                                                                                                     | % of malic acid                 | 0,0                                     |
| [33] Fruit quality: Soluble solids concentration                                                                                                                                                                                                                                                                                                                                                                           | %                               | 0,0                                     |
| [33] Fruit quality: Firmness                                                                                                                                                                                                                                                                                                                                                                                               | Newton or kg * cm <sup>-2</sup> | 0,0                                     |
| [46] Grape quality: total soluble solids (sugar)                                                                                                                                                                                                                                                                                                                                                                           | °Bx                             | <u>\$</u>                               |
| [46] Grape quality: titratable acidity                                                                                                                                                                                                                                                                                                                                                                                     | g * l <sup>-1</sup>             | <u>\$</u>                               |
| [46] Grape quality                                                                                                                                                                                                                                                                                                                                                                                                         | pH [-]                          | <u>\$</u>                               |
| [49] Mean individual fresh fruit mass (quality criterion for the market)                                                                                                                                                                                                                                                                                                                                                   | g * fruit <sup>-1</sup>         | Ī                                       |
| [42] Combination of the following indicators to assess relative economic benefits of Forage Production: Site quality: animal units supported per month and hectare, scaled to [0-1] Site opportunity: distance to markets, scaled to [0-1] Complimentary inputs: availability of water sources, scaled to [0-1] Reliability: Risk of future service loss through urban development within a 3-mile radius, scaled to [0-1] |                                 | • • • • • • • • • • • • • • • • • • •   |
| <sup>[45]</sup> Use of bundles of indicator species that indicate agricultural landscapes with high value for crop yields identified for a certain region. Species may belong to different taxonomic groups                                                                                                                                                                                                                | Not provided                    | (-):::::::::::::::::::::::::::::::::::: |



Table 2: Farm Scale

| Indicator                                                                                                                                                                                                                                                                                                                                                                          | Unit                                     | Indicator values from                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------|
| lndex for average yield of common crops (e.g. corn, soybean and wheat). The index is calculated by dividing the observed value by a target value. Target values may be average or maximum values found in the region or empirical values from the literature. If the calculated index is higher than 1, it is set to one.                                                          | Index 0-1                                | <u> </u>                                |
| lndex for alternate income opportunities provided by speciality (food) products. The index is calculated by dividing the observed value by a target value. Target values may be average or maximum values found in the region or empirical values from the literature. If the calculated index is higher than 1, it is set to one.                                                 | Index 0-1                                | Ţ,                                      |
| <sup>[29]</sup> Accessibility: Share of land surface within 100 meters from road. Values were scaled [0-1]                                                                                                                                                                                                                                                                         | %                                        | <u> </u>                                |
| [29] Share of farmers with the expressed motivation of achieving a high economic value of the farm that indicates their production intensity. Values were scaled to [0-1]                                                                                                                                                                                                          | %                                        | Ţ                                       |
| <sup>[29]</sup> Crop yield                                                                                                                                                                                                                                                                                                                                                         | t * ha <sup>-1</sup> * yr <sup>-1</sup>  | <u>T</u>                                |
| [45] Yield potential: Effect of organic and conventional farming are accounted for by using residuals of crop yields (after fitting farming system (conventional or organic) to yield quantities in t * ha <sup>-1</sup> , instead of reported yields.                                                                                                                             | t * ha <sup>-1</sup>                     | (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) |
| [45] Use of bundles of indicator species that indicate agricultural landscapes with high value for crop yields identified for a certain region. Species may belong to different taxonomic groups.                                                                                                                                                                                  | Not provided                             | (1) XX                                  |
| loss Forage provision by pastures: calculated by a formula derived from expert assessment. Experts determined maximal DM yield, the selected up to 7 variables relevant for yield levels (soil pH, mean depth of a soil series, soil type, amount of phosphorous fertilizer applied, amount of lime applied, irrigation, altitude) and weighed them according to their importance. | t dm * ha <sup>-1</sup> *a <sup>-1</sup> | • • • • • • • • • • • • • • • • • • •   |

Table 3: Regional Scale

| Indicator                      | Unit                                     | Indicator values from |
|--------------------------------|------------------------------------------|-----------------------|
| [3] Production of edible crops | kg * ha <sup>-1</sup> * yr <sup>-1</sup> | <u>á</u>              |



| [6] Food and fodder from plants                                                                                                                                                                                      | t * ha <sup>-1</sup> * yr <sup>-1</sup>                                       | _             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------|
| ·                                                                                                                                                                                                                    | t iia yi                                                                      |               |
| [10] Food crops output per unit sown area                                                                                                                                                                            | kg * ha <sup>-1</sup>                                                         | <u>áÓ</u>     |
| [52] Average annual yield of all food crops in the region                                                                                                                                                            | t * ha <sup>-1</sup>                                                          | <u>á</u>      |
| [51] Food production value: expert based index for ES provision by land cover class [1-5] multiplied by the area of land cover class [km²] and literature-based monetary value of ES                                 | \$ * ha <sup>-1</sup> * yr <sup>-1</sup>                                      |               |
| [51] Food production: expert based index for ES provision by land cover class [1-5] multiplied by the area of land cover class [km²]                                                                                 | Index 1-5 * km <sup>-2</sup>                                                  |               |
| [55] Grain production: total yield of rice, wheat, corn and soy                                                                                                                                                      | t * ha <sup>-1</sup>                                                          | áÍ            |
| [58] Grain output: total grain output from statistics, spatial allocation to grid cells of cultivated land based on the ratio of the cells' NDVI value relative to the NDVI of all cultivated land                   | t * area <sup>-1</sup> *yr <sup>-1</sup>                                      | <u>aa</u> , 🔁 |
| [59] Annual total crop yield (corn, soybean, wheat)                                                                                                                                                                  | bushel * acre <sup>-1</sup>                                                   | <u>T</u>      |
| [5] Average yield                                                                                                                                                                                                    | kg * ha <sup>-1</sup>                                                         | áÍ            |
| <sup>[12]</sup> Yield                                                                                                                                                                                                | kg * ha <sup>-1</sup> * yr <sup>-1</sup>                                      | Ī             |
| [12] Agricultural harvest/yield                                                                                                                                                                                      | 100 kg grain<br>equivalent unit<br>(GEU) * ha <sup>-1</sup> *yr <sup>-1</sup> | T.            |
| [43] Agricultural yields                                                                                                                                                                                             | t * ha <sup>-1</sup>                                                          | <b>*</b>      |
| [41] Agricultural production; values were normalized [0-1] using benchmark values where available and observed values otherwise.                                                                                     | t * ha <sup>-1</sup>                                                          | 0             |
| [60] Total crop production per area (including agricultural and non-agricultural areas)                                                                                                                              | t * ha <sup>-1</sup> * yr <sup>-1</sup>                                       | áÍ            |
| [28] Crop production: values assigned are based on the land cover class. The matrix defined by Burkhard et al., 2012 (DOI:10.1016/j.ecolind.2011.06.019) is adapted to the GlobCover dataset and used in this study. | Index 0-5                                                                     | <u>*</u>      |
| [29] Crop yield (autumn wheat). Values were scaled [0-1]                                                                                                                                                             | t * ha <sup>-1</sup> * yr <sup>-1</sup>                                       | T             |



| [44] Winter wheat yields                                                                                                                                                                  | t * ha <sup>-1</sup>                       | <u>, áí</u>         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------|
| [55] Oil crop production: oil yield                                                                                                                                                       | t * ha <sup>-1</sup>                       | <u>á</u>            |
| [25] Amount of forage                                                                                                                                                                     | Mg dm * ha <sup>-1</sup>                   | Ţ, Q                |
| [59] Annual total forage crops and perennial grass yield (alfalfa, hay, pasture)                                                                                                          | kg * ha <sup>-1</sup>                      | Ţ                   |
| [15] Feed: Percentage of the area used for grazing                                                                                                                                        | %                                          | <u>I</u>            |
| [28] Fodder production: values assigned are based on land cover class. The matrix defined by Burkhard et al., 2012 (DOI:10.1016/j.ecolind.2011.06.019) is adapted and used in this study. | Index 0-5                                  | Ţ.                  |
| [40] Fodder quantity: Above-ground biomass in mown grasslands                                                                                                                             | Not specified                              | Ţ.                  |
| [40] Fodder quantity: Sward height                                                                                                                                                        | Not specified                              | <u> </u>            |
| [40] Fodder quality: Lower Leaf tensile strength (Feed quality)                                                                                                                           | Not specified                              | <u> </u>            |
| [40] Fodder quality: Abundance of legumes                                                                                                                                                 | Not specified                              | <u> </u>            |
| [40] Fodder quality: Leaf crude protein content                                                                                                                                           | Not specified                              | T                   |
| [11] Total biomass production on agricultural land                                                                                                                                        | t DM                                       | <u>I</u>            |
| [53] Annual biomass yield                                                                                                                                                                 | t DM * ha <sup>-1</sup> * yr <sup>-1</sup> | <b>P</b> , <b>6</b> |
| [53] Biomass stock in the landscape (crops and trees) at any one time                                                                                                                     | t DM * ha <sup>-1</sup>                    | <b>P</b> , <b></b>  |
| [14] Sum of arable land cells (GIS: 10m x 10m cells) within the two highest soil fertility classes                                                                                        | m <sup>2</sup>                             | <u></u>             |
| [21] Share of arable land use within a region                                                                                                                                             | %                                          | <u> </u>            |
| [43] Acreage of farmland                                                                                                                                                                  | ha                                         | <b>5</b> , ,        |
| [50] Food production potential: total farmland area                                                                                                                                       | ha * grid cell <sup>-1</sup>               | <u>I</u>            |
| [31] Yield potential                                                                                                                                                                      | 1: very low - 5:<br>very high              | <u> </u>            |



| [45] Yield potential: Effect of organic and conventional farming are accounted for by using residuals of crop yields (after fitting farming system (conventional or organic) to yield quantities in t ha-1), instead of reported yields.                                                                                            | t * ha <sup>-1</sup>                     |             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------|
| [36] Soil fertility of arable fields: index based on water holding capacity, soil moisture and carbonate content.                                                                                                                                                                                                                   | Index 1-5                                | Ţ           |
| [4] Area of agricultural ecosystems under sustainable management                                                                                                                                                                                                                                                                    | Not provided                             | 0           |
| [4] Organic farming                                                                                                                                                                                                                                                                                                                 | Not provided                             | 0           |
| [7] Market value of products per hectare                                                                                                                                                                                                                                                                                            | \$ * ha <sup>-1</sup> * yr <sup>-1</sup> | áÍ          |
| [10] Gross farming output value per rural chemical fertilizer use                                                                                                                                                                                                                                                                   | \$ * kg <sup>-1</sup>                    | áÍ          |
| [10] Agricultural labor productivity [monetary agricultural output value/ agricultural labourer]                                                                                                                                                                                                                                    | \$ * capita <sup>-1</sup>                | áÓ          |
| [19] Gross output of agricultural production (crops & livestock)                                                                                                                                                                                                                                                                    | \$ * ha <sup>-1</sup> * yr <sup>-1</sup> | <b>,</b> [] |
| [19] Net margin of agricultural production (including subsidies)                                                                                                                                                                                                                                                                    | \$ * ha <sup>-1</sup> * yr <sup>-1</sup> | , E         |
| [25] (Historical Analysis) Value of production: Sum of working hours needed to buy basic agric. commodities of 1 ha of land                                                                                                                                                                                                         | h * ha-1                                 | ,           |
| [29] Accessibility: Share of land surface within 100 meters from road that affects the level of agricultural production intensity. Values were scaled [0-1]                                                                                                                                                                         | %                                        | <u> </u>    |
| [16] "Energy" of harvested crops                                                                                                                                                                                                                                                                                                    | solar equivalent<br>J                    | áÍ          |
| [17] Biomass: Energy output from agricultural biomass                                                                                                                                                                                                                                                                               | MJ * ha <sup>-1</sup>                    | <u> </u>    |
| [18] Spatial mapping by stakeholders: stakeholders could place green stickers on a map to mark supply hotspots of this ecosystem service. Red stickers were used to mark locations where the supply of this service is declining. Two different sizes of stickers were used to represent a radius of 0.75 km or 1 km, respectively. | Index 0-5                                | ##<br>  W   |
| [29] Share of farmers with the expressed motivation of achieving a high economic value of the farm. Values were scaled to [0-1]                                                                                                                                                                                                     | %                                        | <u> </u>    |



| [30] Direct goods provision (meat & grain): NPP x H x Qf x 1.5; where NPP: Net primary production (0-1000), H: Harvest index by men (0-1), Qf: quality factor of primary outputs                  | Not provided | <u> </u>              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------|
| [45] Use of bundles of indicator species that indicate agricultural landscapes with high value for crop yields identified for a certain region. Species may belong to different taxonomic groups. | Not provided |                       |
| [54] Percentage of the products of a land use class that is consumed by households as food                                                                                                        | %            | (1) ::::<br>(1) ::::: |
| [54] Percentage of the products of a land use class that is used for animal feed                                                                                                                  | %            | (1)::::               |
| [54] Rating of current service provision per land use class by expert-stakeholders                                                                                                                | Rating 0-10  | (1) ::::<br>(1) ::::: |
| [54] Rating of increases/decreases of service provision in scenarios, relative to the status quo                                                                                                  | %            | ()                    |

Table 4: National Scale

| Indicator                                                                   | Unit                                                                         | Indicator values from |
|-----------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------|
| [11] Total biomass production on agricultural land                          | dm t                                                                         | Ī                     |
| <sup>[57]</sup> Yield                                                       | t * district <sup>-1</sup> or<br>t * nation <sup>-1</sup>                    | áÓÍ                   |
| [39] Yields of food and feed crops                                          | t * ha <sup>-1</sup> ,<br>t dm * ha <sup>-1</sup> ,<br>MJ * ha <sup>-1</sup> | <u>ááÍ</u>            |
| <sup>[39]</sup> Grassland yields                                            | t * ha <sup>-1</sup> ,<br>t dm * ha <sup>-1</sup> ,<br>MJ * ha <sup>-1</sup> | <u>á</u>              |
| [39] Food and feed crop area                                                | ha                                                                           | <u>á</u>              |
| [39] Grassland area                                                         | ha                                                                           | <u>á</u>              |
| [21] Share of arable land use within a region                               | %                                                                            | Ī                     |
| <sup>[4]</sup> Area of agricultural ecosystems under sustainable management | Not provided                                                                 | 0                     |



| [4] Organic farming                                                                                                                                                                                                                                                                                                  | Not provided                             | 0            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------|
| [8] Expert assessment for each land use, based on the indicators: yield/hectare; light, water, nutrient, warmth availability; disturbances, climate change (units not given)                                                                                                                                         | very negative (-3) to very positive (+3) | <b>~</b>     |
| [9] Summed gross margin of production (area of crop multiplied by the gross margin per unit area)                                                                                                                                                                                                                    | \$                                       | <u>á</u> , 🔁 |
| [34] Historical analysis: Production of "ecosystem service products" in a region: cereal crops, vegetables, hop, wine                                                                                                                                                                                                | Not provided                             | <u>,</u> []  |
| [34] Historical analysis: Occurrence of specific production areas in a region: orchards, orchard meadows, vineyards                                                                                                                                                                                                  | Not provided                             | <u>,</u> []  |
| [34] Historical analysis: fodder or fodder used in a region: fodder-hay, fodder-oak                                                                                                                                                                                                                                  | Not provided                             | <u>r</u> , 🖺 |
| [34] Historical analysis: Occurrence of specific livestock feeding system in a region: grazing, grazing/fodder-hay                                                                                                                                                                                                   | Not provided                             | T, U         |
| [22] Maximum stocking rate supported by pastures                                                                                                                                                                                                                                                                     | Livestock units * ha <sup>-1</sup>       | Ī            |
| [57] Quality: alpha-diversity of agricultural goods calculated as Pielou's (1969) J-index (evenness index): J = (sum of (P_it * In(p_it))/ In (St); where St is the number of crops recorded during year t, while p_it refers to the relative abundance of crop i [based on the crop's yield (weight)] during year t | [-]                                      | <u>á</u>     |
| [57] Quality: beta-diversity of agricultural goods calculated as Margalef's (1958) index of diversity (D): D= S-1 / ln(N); where S is the number of species, and N represents the total yield (weight)                                                                                                               | [-]                                      | <u>á</u>     |
| [57] Quality: gamma-diversity calculated from alpha- and beta diversity                                                                                                                                                                                                                                              | [-]                                      | <u>á</u>     |

#### Table 5: Multinational Scale

| Indicator                                                                                                                                                                                         | Unit                  | Indicator values from |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|
| Biomass: Energy output from agricultural biomass                                                                                                                                                  | MJ * ha <sup>-1</sup> | الم                   |
| [32] Crops: values assigned are based on Corine land cover classes. The matrix defined by Burkhard et al. (2009; DOI: 10.3097/LO.200915) was used and modified for the context of riparian zones. | Index 0-5             | <b>.</b>              |



| [32] Fodder: Values assigned are based on Corine land cover classes. The matrix defined by Burkhard et al. (2009; DOI: 10.3097/LO.200915) was used and modified for the context of riparian zones. | Index 0-5    | <b>2</b> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|
| [21] Share of arable land use within a region                                                                                                                                                      | %            | Ţ        |
| [4] Area of agricultural ecosystems under sustainable management                                                                                                                                   | Not provided | 0        |
| [4] Organic farming                                                                                                                                                                                | Not provided | 0        |

#### Table 6: Global Scale

| Indicator                                                        | Unit         | Indicator values from |
|------------------------------------------------------------------|--------------|-----------------------|
| [4] Area of agricultural ecosystems under sustainable management | Not provided | 0                     |
| [4] Organic farming                                              | Not provided | 0                     |



## **References**

| No. | Citation                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | Albizua A, Williams A, Hedlund K, Pascual U (2015) Crop rotations including ley and manure can promote ecosystem services in conventional farming systems. Applied Soil Ecology 95: 54-61. DOI: 10.1016/j.apsoil.2015.06.003                                                                                                                                                                                    |
| 2*  | Allinne C, Savary S, Avelino J (2016) Delicate balance between pest and disease injuries, yield performance, and other ecosystem services in the complex coffee-based systems of Costa Rica. Agriculture Ecosystems & Environment 222: 1-12. DOI: 10.1016/j.agee.2016.02.001                                                                                                                                    |
| 3   | Baro F, Gomez-Baggethun E, Haase D (2017) Ecosystem service bundles along the urban-<br>rural gradient: Insights for landscape planning and management. Ecosystem Services 24:<br>147-159. DOI: 10.1016/j.ecoser.2017.02.021                                                                                                                                                                                    |
| 4*  | Feld CK, Sousa JP, da Silva PM, Dawson TP (2010) Indicators for biodiversity and ecosystem services: towards an improved framework for ecosystems assessment. Biodiversity and Conservation 19(10): 2895-2919. DOI: 10.1007/s10531-010-9875-0                                                                                                                                                                   |
| 5   | Felipe-Lucia MR, Comin FA (2015) Ecosystem services-biodiversity relationships depend on land use type in floodplain agroecosystems. Land Use Policy 46: 201-210. DOI: 10.1016/j.landusepol.2015.02.003                                                                                                                                                                                                         |
| 6*  | Fürst C, Frank S, Witt A, Koschke L, Makeschin F (2013) Assessment of the effects of forest land use strategies on the provision of ecosystem services at the regional scale. Journal of Environmental Management 127: S96-S116. DOI: 10.1016/j.jenvman.2012.09.020                                                                                                                                             |
| 7   | Gret-Regamey A, Weibel B, Bagstad KJ, Ferrari M, Geneletti D, Klug H, Schirpke U, Tappeiner U (2014) On the Effects of Scale for Ecosystem Services Mapping. Plos One 9(12): e112601. DOI: 10.1371/journal.pone.0112601                                                                                                                                                                                         |
| 8   | Helfenstein J, Kienast F (2014) Ecosystem service state and trends at the regional to national level: A rapid assessment. Ecological Indicators 36: 11-18. DOI: 10.1016/j.ecolind.2013.06.031                                                                                                                                                                                                                   |
| 9   | Holland RA, Eigenbrod F, Armsworth PR, Anderson BJ, Thomas CD, Heinemeyer A, Gillings S, Roy DB, Gaston KJ (2011) Spatial covariation between freshwater and terrestrial ecosystem services. Ecological Applications 21(6): 2034-2048. DOI: 10.1890/09-2195.1                                                                                                                                                   |
| 10  | Hou Y, Zhou SD, Burkharda B, Muller F (2014) Socioeconomic influences on biodiversity, ecosystem services and human well-being: A quantitative application of the DPSIR model in Jiangsu, China. Science of the Total Environment 490: 1012-1028. DOI: 10.1016/j.scitotenv.2014.05.071                                                                                                                          |
| 11  | Kirchner M, Schmidt J, Kindermann G, Kulmer V, Mitter H, Prettenthaler F, Rudisser J, Schauppenlehner T, Schonhart M, Strauss F, Tappeiner U, Tasser E, Schmid E (2015) Ecosystem services and economic development in Austrian agricultural landscapes - The impact of policy and climate change scenarios on trade-offs and synergies. Ecological Economics 109: 161-174. DOI: 10.1016/j.ecolecon.2014.11.005 |
| 12  | Koschke L, Furst C, Lorenz M, Witt A, Frank S, Makeschin F (2013) The integration of crop rotation and tillage practices in the assessment of ecosystem services provision at the regional scale. Ecological Indicators 32: 157-171. DOI: 10.1016/j.ecolind.2013.03.008                                                                                                                                         |
| 13  | Kragt ME, Robertson MJ (2014) Quantifying ecosystem services trade-offs from agricultural practices. Ecological Economics 102: 147-157. DOI: 10.1016/j.ecolecon.2014.04.001                                                                                                                                                                                                                                     |
| 14  | Lautenbach S, Kugel C, Lausch A, Seppelt R (2011) Analysis of historic changes in regional ecosystem service provisioning using land use data. Ecological Indicators 11(2): 676-687. DOI: 10.1016/j.ecolind.2010.09.007                                                                                                                                                                                         |
| 15  | Liu S, Crossman ND, Nolan M, Ghirmay H (2013) Bringing ecosystem services into integrated water resources management. Journal of Environmental Management 129: 92-102. DOI: 10.1016/j.jenvman.2013.06.047                                                                                                                                                                                                       |

<sup>11</sup> 



| No. | Citation                                                                                                                                                                                                                                                                                                           |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16  | Ma FJ, Eneji AE, Liu JT (2014) Understanding Relationships among Agro-Ecosystem Services Based on Emergy Analysis in Luancheng County, North China. Sustainability 6(12): 8700-8719. DOI: 10.3390/su6128700                                                                                                        |
| 17  | Mouchet MA, Paracchini ML, Schulp CJE, Sturck J, Verkerk PJ, Verburg PH, Lavorel S (2017) Bundles of ecosystem (dis)services and multifunctionality across European landscapes. Ecological Indicators 73: 23-28. DOI: 10.1016/j.ecolind.2016.00.026                                                                |
| 18  | Palomo I, Martin-Lopez B, Zorrilla-Miras P, Del Amo DG, Montes C (2014) Deliberative mapping of ecosystem services within and around Donana National Park (SW Spain) in relation to land use change. Regional Environmental Change 14(1): 237-251. DOI: 10.1007/s10113-013-0488-5                                  |
| 19  | Posthumus H, Rouquette JR, Morris J, Cowing DJG, Hess TM (2010) A framework for the assessment of ecosystem goods and services; a case study on lowland floodplains in England. Ecological Economics 69(7): 1510-1523. DOI: 10.1016/j.ecolecon.2010.02.011                                                         |
| 20* | Quinn JE, Brandle JR, Johnson RJ (2013) A farm-scale biodiversity and ecosystem services assessment tool: the healthy farm index. International Journal of Agricultural Sustainability 11(2): 176-192. DOI: 10.1080/14735903.2012.726854                                                                           |
| 21  | Schulp CJE, Van Teeffelen AJA, Tucker G, Verburg PH (2016) A quantitative assessment of policy options for no net loss of biodiversity and ecosystem services in the European Union. Land Use Policy 57: 151-163. DOI: 10.1016/j.landusepol.2016.05.018                                                            |
| 22  | Schulte RPO, Creamer RE, Donnellan T, Farrelly N, Fealy R, O'Donoghue C, O'HUallachain D (2014) Functional land management: A framework for managing soil-based ecosystem services for the sustainable intensification of agriculture. Environmental Science & Policy 38: 45-58. DOI: 10.1016/j.envsci.2013.10.002 |
| 23  | Syswerda SP, Robertson GP (2014) Ecosystem services along a management gradient in Michigan (USA) cropping systems. Agriculture Ecosystems & Environment 189: 28-35. DOI: 10.1016/j.agee.2014.03.006                                                                                                               |
| 24  | Verbruggen E, Kiers ET, Bakelaar PNC, Roling WFM, van der Heijden MGA (2012) Provision of contrasting ecosystem services by soil communities from different agricultural fields. Plant and Soil 350(1-2): 43-55. DOI: 10.1007/s11104-011-0828-5                                                                    |
| 25  | Vigl LE, Tasser E, Schirpke U, Tappeiner U (2017) Using land use/land cover trajectories to uncover ecosystem service patterns across the Alps. Regional Environmental Change 17(8): 2237-2250. DOI: 10.1007/s10113-017-1132-6                                                                                     |
| 26  | Williams A, Hedlund K (2013) Indicators of soil ecosystem services in conventional and organic arable fields along a gradient of landscape heterogeneity in southern Sweden. Applied Soil Ecology 65: 1-7. DOI: 10.1016/j.apsoil.2012.12.019                                                                       |
| 27* | Williams A, Hedlund K (2014) Indicators and trade-offs of ecosystem services in agricultural soils along a landscape heterogeneity gradient. Applied Soil Ecology 77: 1-8. DOI: 10.1016/j.apsoil.2014.01.001                                                                                                       |
| 28* | Zhang ZM, Gao JF, Fan XY, Lan Y, Zhao MS (2017) Response of ecosystem services to socioeconomic development in the Yangtze River Basin, China. Ecological Indicators 72: 481-493. DOI: 10.1016/j.ecolind.2016.08.035                                                                                               |
| 29  | Andersson E, Nykvist B, Malinga R, Jaramillo F, Lindborg R (2015) A social—ecological analysis of ecosystem services in two different farming systems. Ambio 44(1): 102-112. DOI: 10.1007/s13280-014-0603-y                                                                                                        |
| 30  | Barral MP, Oscar MN (2012) Land-use planning based on ecosystem service assessment: A case study in the Southeast Pampas of Argentina. Agriculture, Ecosystems and Environment 154: 34-43. DOI: 10.1016/j.agee.2011.07.010                                                                                         |
| 31  | Bastian O, Lupp G, Syrbe RU, Steinháußer R (2013) Ecosystem services and energy crops - Spatial differentiation of risks. Ekologia Bratislava 32(1): 13-29. DOI: 10.2478/eko-2013-0002                                                                                                                             |

<sup>12</sup> 



| No. | Citation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 32  | Clerici N, Paracchini ML, Maes J (2014) Land-cover change dynamics and insights into ecosystem services in European stream riparian zones. Ecohydrology and Hydrobiology 14(2): 107-120. DOI: 10.1016/j.ecohyd.2014.01.002                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 33  | Demestihas C, Plénet D, Génard M, Raynal C, Lescourret F (2017) Ecosystem services in orchards. A review. Agronomy for Sustainable Development 37(2): 12. DOI: 10.1007/s13593-017-0422-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 34  | Dittrich A, von Wehrden H, Abson DJ, Bartkowski B, Cord AF, Fust P, Hoyer C, Kambach S, Meyer MA, Radzevičiūtė R, Nieto-Romero M, Seppelt R, Beckmann M (2017) Mapping and analysing historical indicators of ecosystem services in Germany. Ecological Indicators 75: 101-110. DOI: 10.1016/j.ecolind.2016.12.010                                                                                                                                                                                                                                                                                                                                                          |
| 35* | Duru M, Therond O, Martin G, Martin-Clouaire R, Magne MA, Justes E, Journet EP, Aubertot JN, Savary S, Bergez JE, Sarthou JP (2015) How to implement biodiversity-based agriculture to enhance ecosystem services: a review. Agronomy for Sustainable Development 35(4): 1259-1281. DOI: 10.1007/s13593-015-0306-1                                                                                                                                                                                                                                                                                                                                                          |
| 36  | Früh-Müller A, Hotes S, Breuer L, Wolters V, Koellner T (2016) Regional patterns of ecosystem services in cultural landscapes. Land 5(2): 17. DOI: 10.3390/land5020017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 37  | Grard BJP, Chenu C, Manouchehri N, Houot S, Frascaria-Lacoste N, Aubry C (2018) Rooftop farming on urban waste provides many ecosystem services. Agronomy for Sustainable Development 38(1): 2. DOI: 10.1007/s13593-017-0474-2                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 38  | Kearney SP, Fonte SJ, García E, Siles P, Chan KMA, Smukler SM (2019) Evaluating ecosystem service trade-offs and synergies from slash-and-mulch agroforestry systems in El Salvador. Ecological Indicators 105: 264-278. DOI: 10.1016/j.ecolind.2017.08.032                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 39  | Maes J, Liquete C, Teller A, Erhard M, Paracchini ML, Barredo JI, Grizzetti B, Cardoso A, Somma F, Petersen JE, Meiner A, Gelabert ER, Zal N, Kristensen P, Bastrup-Birk A, Biala K, Piroddi C, Egoh B, Degeorges P, Fiorina C, Santos-Martín F, Naruševičius V, Verboven J, Pereira HM, Bengtsson J, Gocheva K, Marta-Pedroso C, Snäll T, Estreguil C, San-Miguel-Ayanz J, Pérez-Soba M, Grêt-Regamey A, Lillebø AI, Malak DA, Condé S, Moen J, Czúcz B, Drakou EG, Zulian G, Lavalle C (2016) An indicator framework for assessing ecosystem services in support of the EU Biodiversity Strategy to 2020. Ecosystem Services 17: 14-23. DOI: 10.1016/j.ecoser.2015.10.023 |
| 40  | Quétier F, Lavorel S, Daigney S, de Chazal J (2009) Assessing ecological and social uncertainty in the evaluation of land-use impacts on ecosystem services. Journal of Land Use Science 4(3): 173-199. DOI: 10.1080/17474230903036667                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 41  | Rodríguez-Loinaz G, Alday JG, Onaindia M (2014) Multiple ecosystem services landscape index: A tool for multifunctional landscapes conservation. Journal of Environmental Management 147: 152-163. DOI: 10.1016/j.jenvman.2014.09.001                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 42  | Wainger LA, King DM, Mack RN, Price EW, Maslin T (2010) Can the concept of ecosystem services be practically applied to improve natural resource management decisions? Ecological Economics 69(5): 978-987. DOI: 10.1016/j.ecolecon.2009.12.011                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 43  | Adhikari S, Baral H, Nitschke CR (2018) Identification, Prioritization and Mapping of Ecosystem Services in the Panchase Mountain Ecological Region of Western Nepal. Forests 9(9): 554. DOI: 10.3390/f9090554                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 44  | Baude M, Meyer BC, Schindewolf M (2019) Land use change in an agricultural landscape causing degradation of soil based ecosystem services. Science of the Total Environment 659: 1526-1536. DOI: 10.1016/j.scitotenv.2018.12.455                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 45  | Birkhofer K, Rusch A, Andersson GKS, Bommarco R, Dänhardt J, Ekbom B, Jönsson A, Lindborg R, Olsson O, Rader R, Stjernman M, Williams A, Hedlund K, Smith HG (2018) A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

<sup>13</sup> 



| No. | Citation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | framework to identify indicator species for ecosystem services in agricultural landscapes. Ecological Indicators 91: 278-286. DOI: 10.1016/j.ecolind.2018.04.018                                                                                                                                                                                                                                                                                                                                                                                    |
| 46  | Costantini EAC, Castaldini M, Diago MP, Giffard B, Lagomarsino A, Schroers HJ, Priori S, Valboa G, Agnelli AE, Akça E, D'Avino L, Fulchin E, Gagnarli E, Kiraz ME, Knapič M, Pelengić R, Pellegrini S, Perria R, Puccioni S, Simoni S, Tangolar S, Tardaguila J, Vignozzi N, Zombardo A (2018) Effects of soil erosion on agro-ecosystem services and soil functions: A multidisciplinary study in nineteen organically farmed European and Turkish vineyards. Journal of Environmental Management 223: 614-624. DOI: 10.1016/j.jenvman.2018.06.065 |
| 47  | Daryanto S, Fu B, Zhao W (2019) Evaluating the use of fire to control shrub encroachment in global drylands: A synthesis based on ecosystem service perspective. Science of the Total Environment 648: 285-292. DOI: 10.1016/j.scitotenv.2018.08.140                                                                                                                                                                                                                                                                                                |
| 48  | Daryanto S, Fu BJ, Wang LX, Jacinthe PA, Zhao WW (2018) Quantitative synthesis on the ecosystem services of cover crops. Earth-Science Reviews 185: 357-373. DOI: 10.1016/j.earscirev.2018.06.013                                                                                                                                                                                                                                                                                                                                                   |
| 49  | Demestihas C, Plénet D, Génard M, Garcia de Cortazar-Atauri I, Launay M, Ripoche D, Beaudoin N, Simon S, Charreyron M, Raynal C, Lescourret F (2018) Analyzing ecosystem services in apple orchards using the STICS model. European Journal of Agronomy 94: 108-119. DOI: 10.1016/j.eja.2018.01.009                                                                                                                                                                                                                                                 |
| 50  | Hashimoto S, DasGupta R, Kabaya K, Matsui T, Haga C, Saito O, Takeuchi K (2018) Scenario analysis of land-use and ecosystem services of social-ecological landscapes: implications of alternative development pathways under declining population in the Noto Peninsula, Japan. Sustainability Science 14: 53-75. DOI: 10.1007/s11625-018-0626-6                                                                                                                                                                                                    |
| 51  | Huq N, Bruns A, Ribbe L (2019) Interactions between freshwater ecosystem services and land cover changes in southern Bangladesh: A perspective from short-term (seasonal) and long-term (1973-2014) scale. Science of the Total Environment 650: 132-143. DOI: 10.1016/j.scitotenv.2018.08.430                                                                                                                                                                                                                                                      |
| 52  | Jaligot R, Chenal J, Bosch M, Hasler S (2019) Historical dynamics of ecosystem services and land management policies in Switzerland. Ecological Indicators 101: 81-90. DOI: 10.1016/j.ecolind.2019.01.007                                                                                                                                                                                                                                                                                                                                           |
| 53  | Kay S, Crous-Duran J, García de Jalón S, Graves A, Palma JHN, Roces-Díaz JV, Szerencsits E, Weibel R, Herzog F (2018) Landscape-scale modelling of agroforestry ecosystems services in Swiss orchards: a methodological approach. Landscape Ecology 33(9): 1633-1644. DOI: 10.1007/s10980-018-0691-3                                                                                                                                                                                                                                                |
| 54  | Koo H, Kleemann J, Fürst C (2018) Land use scenario modeling based on local knowledge for the provision of ecosystem services in northern Ghana. Land 7(2): 59. DOI: 10.3390/land7020059                                                                                                                                                                                                                                                                                                                                                            |
| 55  | Li T, Lü Y, Fu B, Hu W, Comber AJ (2019) Bundling ecosystem services for detecting their interactions driven by large-scale vegetation restoration: enhanced services while depressed synergies. Ecological Indicators 99: 332-342. DOI: 10.1016/j.ecolind.2018.12.041                                                                                                                                                                                                                                                                              |
| 56  | Nahuelhual L, Benra F, Laterra P, Marin S, Arriagada R, Jullian C (2018) Patterns of ecosystem services supply across farm properties: Implications for ecosystem services-based policy incentives. Science of the Total Environment 634: 941-950. DOI: 10.1016/j.scitotenv.2018.04.042                                                                                                                                                                                                                                                             |
| 57  | Ohsawa T, Okano T, Nakao F, Kabaya K, Kofuku S, Kikuchi K, Nakashizuka T (2018) Underuse/overuse and diversity of provisioning services and their change: the case of the Japanese national ecosystem service assessment (JBO2). Sustainability Science: 1-13. DOI: 10.1007/s11625-018-0531-z                                                                                                                                                                                                                                                       |

<sup>14</sup> 



| No. | Citation                                                                                                                                                                                                                                                                                                              |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 58  | Peng J, Tian L, Liu Y, Zhao M, Hu Y, Wu J (2017) Ecosystem services response to urbanization in metropolitan areas: Thresholds identification. Science of the Total Environment 607-608: 706-714. DOI: 10.1016/j.scitotenv.2017.06.218                                                                                |
| 59  | Qiu JX, Carpenter SR, Booth EG, Motew M, Zipper SC, Kucharik CJ, Loheide SP, Turner AG (2018) Understanding relationships among ecosystem services across spatial scales and over time. Environmental Research Letters 13(5): 054020. DOI: 10.1088/1748-9326/aabb87                                                   |
| 60  | Santos-Martín F, Zorrilla-Miras P, Palomo-Ruiz I, Montes C, Benayas J, Maes J (2019) Protecting nature is necessary but not sufficient for conserving ecosystem services: A comprehensive assessment along a gradient of land-use intensity in Spain. Ecosystem Services 35: 43-51. DOI: 10.1016/j.ecoser.2018.11.006 |
| 61* | Tang LL, Hayashi K, Kohyama K, Leon A (2018) Reconciling Life Cycle Environmental Impacts with Ecosystem Services: A Management Perspective on Agricultural Land Use. Sustainability 10(3): 630. DOI: 10.3390/su10030630                                                                                              |
| 62  | Van Vooren L, Reubens B, Broekx S, Reheul D, Verheyen K (2018) Assessing the impact of grassland management extensification in temperate areas on multiple ecosystem services and biodiversity. Agriculture, Ecosystems and Environment 267: 201-212. DOI: 10.1016/j.agee.2018.08.016                                 |

<sup>15</sup>