

Ecosystem Service	Biotic filtration, sequestration and storage of	
	waste	
CICES class name	Filtration/sequestration/storage/accumulation by micro-	
	organisms, algae, plants, and animals	
CICES Section	Regulation & Maintenance (Biotic)	
CICES Class code	2.1.1.2	

Sample Indicators

Indicator values from			
Experiment or direct measurement	3	Survey	۹ ۱۱۱۱
Expert assessment	.	Statistical- or census data	áŐ
Model or GIS	ئ ر	Literature values	
Stakeholder participation	∭%	Not provided	\Diamond

Table 1: Field Scale

Indicator	Unit	Indicator values from
^[1] Filtering and buffering:	Not provided	
-Soil organic carbon [%]		0
-Acetate esterase enzyme activity [not provided]		\otimes
-Bulk density [g * cm ⁻³]		
-Basal soil respiration [mg $CO_2 * g^{-1}$]		
^[3] Soil carbon (0-100cm)	kg C * m ⁻²	B
^[2] Natural attenuation/ clean groundwater:		
Indicator value calculated as:		
$I = \frac{\sum \log(\frac{i}{i_{max}}) }{n}$		
With: I – Indicator value, i – variable i measured, i _{max} – maximum ecologic potential of variable i in benchmark reference, n – number of variables	-	<u>\$</u> ,
Where performance is considered better than in the benchmark and deviation, therefore, has a positive effect,		
$ \log(\frac{i}{i_{max}}) $ subtracted from the sum instead of added. For		
this ES, variables were:		
-Soil organic matter [% dw]		
-Bacterial biomass [mg C *g dw ⁻¹]		

-pH in KCl	
-Physiological diversity bacteria [bBiolog. CLPP: Hill's slope]	
-Water suluble P (Pw) [mg * l ⁻¹] and extractable P (PAL) [mg *	
kg ⁻¹]	

Table 2: Farm Scale

Indicator	Unit	Indicator values from
^[4] Share of nitrogen retained during water passage between agricultural sub-catchment and sea. Values were scaled [0-1]	%	لي. الم
^[4] Share of farmers that express clearly a value and care for the health of the land. Values were scaled to [0-1]	%	لہ

Table 3: Regional Scale

Indicator	Unit	Indicator values from
^[10] Nitrate leaching	kg * ha ⁻¹ * yr ⁻¹	<u>-</u>
^[5] Nitrogen loss	kt N	<u>حر</u>
^[8] Risk of nitrate leaching: exchange frequency of the soil water in the root layer. Infiltration rate divided by field capacity	%	<u>کم</u>
^[4] Share of nitrogen retained during water passage between agricultural sub-catchment and sea. Values were scaled [0-1]	%	<u>ح</u>
^[6] Mechanical filtration capacity: infiltration capacity, calculated as:	cm * d ⁻¹	
$C = soil_{perm} * (1 - s)$		ய ளி
With: C – mechanical filtration capacity, soil _{perm} – soil permeability [cm * d ⁻¹], s – share of anthropogenic surface sealing		, <u>560</u>
^[6] Physicochemical filtration capacity, calculated as:	cmol(+) * kg dm ⁻¹	
C = CEC * (1 - s)		
With: C – physicochemical filtration capacity, CEC – effective cation exchange capacity [cmol(+) * kg dm ⁻¹], s – share of anthropogenic surface sealing)		<u>idu</u>
^[9] Share of natural forest cover in municipality's surface. Values were normalized [0-1] using benchmark values where available and observed values otherwise.	%	\bigcirc

Impact Area & Indicator Factsheet: Ecosystem Services

^[4] Share of farmers that express clearly a value and care for the health of the land. Values were scaled to [0-1]	%	<u>ل</u>
^[7] Nutrient regulation: Assigned values depend on the land cover class. The matrix defined by Burkhard et al., 2012 (DOI:10.1016/j.ecolind.2011.06.019) was adapted and used in this study.	Index 0 - 5	<u>ل</u> م م
^[11] Water purification and provision, calculated as:		
$W = NPP * (1 - VCNPP) * IC_s * S_{cf}$		
With: W – water purification and provision, NPP – Net Primary Production calculated from NDVI-values and expressed on a relative scale set to $[0 - 1000]$, VCNPP – coefficient of variation of NPP $[0 - 1]$, IC_s – soil infiltration capacity $[0 - 1]$, S_{cf} – slope average correction factor of the study area $[0 - 1]$	-	<u>ب</u>
^[11] Waste purification, calculated as:		
$W = NPP * (1 - VCNPP) * I_w * O_w * 1.75$		
With: NPP – Net Primary Production [0-1000], VCNPP – coefficient of variation of NPP [0–1], I_w – water input to the system [0–1], O_w – water bodies occupancy percentage and flat floodplain area [0–1]	-	Ţ

Table 4: Multinational Scale

Indicator	Unit	Indicator values from
^[12] Nutrient regulation: Values were assigend for Corine land cover classes, based on values published by Burkhard et al. (2009; DOI: 10.3097/LO.200915) and modified for the context of riparian zones.	Index 0 - 5	•

References

No.	Citation
1*	Ferrarini A, Bini C, Amaducci S (2017) Soil and ecosystem services: Current knowledge and evidences from Italian case studies. Applied Soil Ecology 123: 693-698. DOI: 10.1016/j.apsoil.2017.06.031
2	Rutgers M, van Wijnen HJ, Schouten AJ, Mulder C, Kuiten AMP, Brussaard L, Breure AM (2012) A method to assess ecosystem services developed from soil attributes with stakeholders and data of four arable farms. Science of the Total Environment 415: 39-48. DOI: 10.1016/j.scitotenv.2011.04.041
3	Syswerda SP, Robertson GP (2014) Ecosystem services along a management gradient in Michigan (USA) cropping systems. Agriculture Ecosystems & Environment 189: 28-35. DOI: 10.1016/j.agee.2014.03.006
4	Andersson E, Nykvist B, Malinga R, Jaramillo F, Lindborg R (2015) A social–ecological analysis of ecosystem services in two different farming systems. Ambio 44(1): 102-112. DOI: 10.1007/s13280-014-0603-y
5	Huber R, Lehmann B (2010) Economies of Scope in the Agricultural Provision of Ecosystem Services: An Application to a High Cost Production Region. German Journal of Agricultural Economics 59(2): 91-105.
6	Nordborg M, Sasu-Boakye Y, Cederberg C, Berndes G (2017) Challenges in developing regionalized characterization factors in land use impact assessment: impacts on ecosystem services in case studies of animal protein production in Sweden. International Journal of Life Cycle Assessment 22(3): 328-345. DOI: 10.1007/s11367-016-1158-x
7*	Zhang ZM, Gao JF, Fan XY, Lan Y, Zhao MS (2017) Response of ecosystem services to socioeconomic development in the Yangtze River Basin, China. Ecological Indicators 72: 481-493. DOI: 10.1016/j.ecolind.2016.08.035
8	Bastian O, Lupp G, Syrbe RU, Steinháußer R (2013) Ecosystem services and energy crops - Spatial differentiation of risks. Ekologia Bratislava 32(1): 13-29. DOI: 10.2478/eko-2013-0002
9	Rodríguez-Loinaz G, Alday JG, Onaindia M (2015) Multiple ecosystem services landscape index: A tool for multifunctional landscapes conservation. Journal of Environmental Management 147: 152-163. DOI: 10.1016/j.jenvman.2014.09.001
10	Kay S, Crous-Duran J, Ferreiro-Domínguez N, García de Jalón S, Graves A, Moreno G, Mosquera-Losada MR, Palma JHN, Roces-Díaz JV, Santiago-Freijanes JJ, Szerencsits E, Weibel R, Herzog F (2018) Spatial similarities between European agroforestry systems and ecosystem services at the landscape scale. Agroforestry Systems 92(4): 1075-1089. DOI: 10.1007/s10457-017-0132-3
11	Barral MP, Oscar MN (2012) Land-use planning based on ecosystem service assessment: A case study in the Southeast Pampas of Argentina. Agriculture, Ecosystems and Environment 154: 34-43. DOI: 10.1016/j.agee.2011.07.010
12	Clerici N, Paracchini ML, Maes J (2014) Land-cover change dynamics and insights into ecosystem services in European stream riparian zones. Ecohydrology and Hydrobiology 14(2): 107-120. DOI: 10.1016/j.ecohyd.2014.01.002