

Ecosystem Service	Chemical condition of salt waters
CICES class name	Regulation of the chemical condition of salt waters by living
	processes
CICES Section	Regulation & Maintenance (Biotic)
CICES Class code	2.2.5.2

Sample Indicators

Indicator values from			
Experiment or direct measurement	B	Survey	و ۱۱۱۱ ۱۱۱۱
Expert assessment	.	Statistical- or census data	á
Model or GIS	ل ر	Literature values	
Stakeholder participation	₩% %	Not provided	\otimes

Table 1: Field Scale

Indicator	Unit	Indicator values from
^[7] NO ₃ - loss through leaching and runoff, following cover crop or fallow period	Not provided	
^[7] Dissolved P loss through leaching and runoff, following cover crop or fallow period	Not provided	
^[8] Nitrate leaching prevention: nitrate concentration in drained water	mg NO ₃ * liter of drained water ⁻¹	٩

Table 2: Farm Scale

Indicator	Unit	Indicator values from
^[3] Share of nitrogen retained during water passage between agricultural sub-catchment and sea.	%	م ر •
^[3] Share of farmers that express clearly a value and care for the health of the land.	%	م ر ۳

Table 3: Regional Scale

Indicator	Unit	Indicator values from
^[1] Phosphorus retention, calculated with InVEST model	kg * ha ⁻¹	<u>ل</u> ل

^[6] Costal nitrogen load per agricultural area in the watershed: amount of nitrogen leached from soils (and not retained) that reaches the coast, divided by the agricultural area	t * ha ⁻² * yr ⁻¹	يت (<u>ت</u>
^[9] Nitrogen retention at watershed level calculated with InVEST's Nutrient Retention Model. Calculation based on nitrogen loading and vegetation filtering value for different land-use classes	t N * yr-1 * grid cell-1	<u>م</u>
^[11] Leakage of nutrients	kg * ha ⁻¹ * yr ⁻¹	
^[11] Turnover rates of nutrients, e.g., N, P	kg * yr⁻¹	
[11] Total dissolved solids	mg * l ⁻¹	
^[11] Decomposition rate of organic matter	kg * ha ⁻¹	
^[2] Water purification: ecosystem service supply depends on the land cover class. The matrix defined by Burkhard et al., 2012 (DOI:10.1016/j.ecolind.2011.06.019) was and used in this study.	Index 0-5	<u>L</u>
^[3] Share of nitrogen retained during water passage between agricultural sub-catchment and sea.	%	<u>س</u>
^[3] Share of farmers that express clearly a value and care for the health of the land.	%	ل ر الر
^[10] Mediation of water pollution such as excess nitrogen removal: expert based index for ecosystem service supply by land cover class [1-5], multiplied by the area of the land cover class [km ²]	Index 1-5 * km ⁻²	
^[10] Mediation of water pollution such as excess nitrogen removal value: expert based index for ecosystem service supply by land cover class [1-5], multiplied by the area of the land cover class [km ²] and a literature-based monetary value of the ecosystem service	\$ * ha ⁻¹ * yr ⁻¹	₽, <u>,</u> <u></u>
^[11] Area occupied by riparian forests	ha	

Table 4: National Scale

Indicator	Unit	Indicator values from
^[5] Indicators of groundwater quality	Not specified	\otimes

Table 5: Multinational Scale

Indicator	Unit	Indicator values from
^[4] Water purification: Values for Corine land cover classes, based on values published by Burkhard et al. (2009; DOI: 10.3097/LO.200915) and modified for the context of riparian	Index 0-5	2 /-
zones.		

Impact Area & Indicator Factsheet: Ecosystem Services

References

No.	Citation
1	Meyer MA, Chand T, Priess JA (2015) Comparing Bioenergy Production Sites in the
	Southeastern US Regarding Ecosystem Service Supply and Demand. Plos One 10(3):
	e0116336. DOI: 10.1371/journal.pone.0116336
2*	Zhang ZM, Gao JF, Fan XY, Lan Y, Zhao MS (2017) Response of ecosystem services to
	socioeconomic development in the Yangtze River Basin, China. Ecological Indicators 72: 481-
	493. DOI: 10.1016/j.ecolind.2016.08.035
3	Andersson E, Nykvist B, Malinga R, Jaramillo F, Lindborg R (2015) A social-ecological analysis
	of ecosystem services in two different farming systems. Ambio 44(1): 102-112. DOI:
	10.1007/s13280-014-0603-y
4	Clerici N, Paracchini ML, Maes J (2014) Land-cover change dynamics and insights into
	ecosystem services in European stream riparian zones. Ecohydrology and Hydrobiology
	14(2): 107-120. DOI: 10.1016/j.ecohyd.2014.01.002
5	Maes J, Liquete C, Teller A, Erhard M, Paracchini ML, Barredo JI, Grizzetti B, Cardoso A,
	Somma F, Petersen JE, Meiner A, Gelabert ER, Zal N, Kristensen P, Bastrup-Birk A, Biala K,
	Piroddi C, Egoh B, Degeorges P, Fiorina C, Santos-Martín F, Naruševičius V, Verboven J,
	Pereira HM, Bengtsson J, Gocheva K, Marta-Pedroso C, Snäll T, Estreguil C, San-Miguel-Ayanz
	J, Pérez-Soba M, Grêt-Regamey A, Lillebø AI, Malak DA, Condé S, Moen J, Czúcz B, Drakou
	EG, Zulian G, Lavalle C (2016) An indicator framework for assessing ecosystem services in
	support of the EU Biodiversity Strategy to 2020. Ecosystem Services 17: 14-23. DOI:
	10.1016/j.ecoser.2015.10.023
6	Odgaard MV, Turner KG, Bøcher PK, Svenning JC, Dalgaard T (2017) A multi-criteria,
	ecosystem-service value method used to assess catchment suitability for potential wetland
	reconstruction in Denmark. Ecological Indicators 77: 151-165. DOI:
	10.1016/j.ecolind.2016.12.001
7	Daryanto S, Fu BJ, Wang LX, Jacinthe PA, Zhao WW (2018) Quantitative synthesis on the
	ecosystem services of cover crops. Earth-Science Reviews 185: 357-373. DOI:
_	10.1016/j.earscirev.2018.06.013
8	Demestihas C, Plénet D, Génard M, Garcia de Cortazar-Atauri I, Launay M, Ripoche D,
	Beaudoin N, Simon S, Charreyron M, Raynal C, Lescourret F (2018) Analyzing ecosystem
	services in apple orchards using the STICS model. European Journal of Agronomy 94: 108-
0	119. DOI: 10.1016/j.eja.2018.01.009
9	Hashimoto S, DasGupta R, Kabaya K, Matsui T, Haga C, Saito O, Takeuchi K (2018) Scenario
	analysis of land-use and ecosystem services of social-ecological landscapes: implications of
	alternative development pathways under declining population in the Noto Peninsula, Japan.
10	Sustainability Science 14: 53-75. DOI: 10.1007/s11625-018-0626-6
10	Huq N, Bruns A, Ribbe L (2019) Interactions between freshwater ecosystem services and land
	cover changes in southern Bangladesh: A perspective from short-term (seasonal) and long-
	term (1973-2014) scale. Science of the Total Environment 650: 132-143. DOI:
11	10.1016/j.scitotenv.2018.08.430
11	Phama HV, Torresan S, Critto A, Marcomini A (2019) Alteration of freshwater ecosystem
	services under global change - A review focusing on the Po River basin (Italy) and the Red River basin (Vietnam). Science of the Total Environment 652: 1347-1365. DOI:
	10.1016/j.scitotenv.2018.10.303