

Ecosystem Service	Chemical composition of atmosphere and	
	oceans	
CICES class name	Regulation of chemical composition of atmosphere and oceans	
CICES Section	Regulation & Maintenance (Biotic)	
CICES Class code	2.2.6.1	

Sample Indicators

Indicator values from				
Experiment or direct measurement	B	Survey	۹ ۱۱۱۱ ۱۱۱۱	
Expert assessment	2	Statistical- or census data	áŐ	
Model or GIS	گ	Literature values		
Stakeholder participation	₩%	Not provided	\bigcirc	

Table 1: Field Scale

Indicator	Unit	Indicator values from
^[29] Long term carbon stabilization: Carbon content in microaggregate-within-macroaggregate fraction (c.f. Six & Paustian, 2014. DOI: 10.1016/j.soilbio.2013.06.014)	Not provided	\otimes
^[42] Soil organic carbon content (0–10 cm)	Not provided	
^[55] Soil organic carbon (SOC) stock (0-20cm)	Mg * ha⁻¹	s, o
^[14] Carbon stock in soil (0-30 cm)	Mg * ha ⁻¹	B
^[24] Soil organic carbon (0–30 cm) after 20 years of management	Mg * ha ⁻¹	<u>م</u> ر م
^[25] Soil organic carbon (0–30 cm) after 20 years of management	Mg * ha ⁻¹	<u>م</u> ر م
^[14] Carbon in trees (dbh≥10 cm) and bushes (dbh <10 cm, height >2 m)	Mg * ha ⁻¹	B
^[37] Carbon stored in aboveground woody biomass; carbon stored in topsoil (0–20 cm)	Mg * ha¹	B
^[38] Carbon storage in aboveground biomass (sum of herbaceous and tree components) and soils (upper 20 cm)	Mg * ha ⁻¹	B
^[44] Amounts of carbon fixed in the soil and in the annual organs of orchard trees	kg * ha ⁻¹ * yr ⁻¹	<u>ــر</u>
^[33] Carbon sequestered in soil and orchard-trees	kg * ha ⁻¹ * unit time ⁻¹	
^[51] Climate regulation: annual net ecosystem exchange (NEE) of carbon	Mg C * ha ⁻¹	<u>م</u> ر

^[44] Prevention of N denitrification: yearly amount of denitrified nitrogen	kg N ₂ O-N * ha ⁻¹ * yr^{-1}	٩٩
^[33] Greenhouse gas mitigation: Cumulative denitrified nitrogen	kg N ₂ O-N * ha ⁻¹ * unit time ⁻¹	
^[54] Greenhouse gas emissions	CO2 equ. * ha ⁻¹	
^[23] Net global warming impact of soil carbon sequestration, agronomic N fertilizer application, lime application, fuel usage, nitrous oxide (N2O) emissions, and methane (CH4) oxidation	g CO ₂ e * m ⁻² * yr ⁻	F , A
^[33] Greenhouse gas mitigation: Cumulative amounts of CO ₂ emitted by agricultural operations	kg C * ha ⁻¹ * unit time ⁻¹	, C
^[38] Emissions of GHG (CO ₂ , CH ₄ , N ₂ O) measured by static chamber techniques in the field	CO _{2 equ.}	
^[43] Emissions of CO ₂ and N ₂ O	Not provided	
[41] Indicator value calculated as: $I = \frac{\sum \log(\frac{i}{i_{max}}) }{n}$ With: i – variable i measured, i _{max} – maximum ecologic potential of variable i in benchmark reference, n – number of variables. Where performance is considered better than in the benchmark and deviation, therefore, has a positive effect, $ \log(\frac{i}{i_{max}}) $ is subtracted from the sum instead of added. For this ecosystem service, variables were: -Soil organic matter [% dw] -Bacterial biomass [mg C /g dw] -pH in KCl -Physiological diversity bacteria [biolog. CLPP: Hill's slope]	-	<u>\$</u> ,

Table 2: Farm Scale

Indicator	Unit	Indicator values from
^[34] Climate regulation: Vegetation cover [%], expressed as a four-level index	poor-fair-good- excellent]	<u>E</u>
^[53] Vegetation carbon stock: Above ground dry biomass of trees, bushes, and herbaceous plants	Mg C * ha ⁻¹	\$
^[53] Topsoil carbon stock: calculated from bulk density and total C content at 0–10, 10–20, and 20–30 cm depths	Mg C * ha ⁻¹	\$

Table 3: Regional Scale

Indicator	Unit	Indicator values from
^[1] Carbon sequestration	kg * ha ⁻¹ * yr ⁻¹	

^[15] Carbon sequestration rate (above and belowground)	Mg * ha ⁻¹ * yr ⁻¹	
^[36, 47] Carbon sequestration rate: sum of above and below ground crop and tree biomass and soil organic carbon (SOC)	t * ha ⁻¹ * yr ⁻¹	٩
^[5] Carbon sequestration: annual change in above- & below ground biomass. Values are monetarized based on an estimated social cost of carbon of \$43/ton.	\$ * ha ⁻¹ * yr ⁻¹	
^[4] Carbon sequestration in soil & biomass	kg C *ha ⁻¹	·/-
^[9] Organic carbon stored in soils and above- and belowground biomass, divided by area	kg * m-2	ال ال ال
^[3] Carbon sequestered in above- and belowground biomass of woody species	t CO2 eq. * ha ⁻¹ * yr ⁻¹	
^[16] Carbon sequestration: Amount of carbon that is sequestered from land use, land use change and forestry	C * km ⁻² * yr ⁻¹	۔
^[52] Above- and belowground carbon stored in living plant material.	t C * ha ⁻¹ * yr ⁻¹	<u>م</u> لاً.
^[31] Carbon sequestration: identification of areas with peat soils or carbon-rich semi-terrestrial areas	Not provided	<u>م</u> ر مر
^[21] Carbon sequestration: Values based on land use by assigning a country-specific, land use type specific emission factor to each land use type. The emission factor also considers forest age and soil carbon stock.	Not provided	<u>ح</u>
^[49] Soil organic carbon stock, values for CORINE land cover classes	t C * ha ⁻¹	
^[26] Carbon stock of above- and below ground phytomass within different land cover classes	Mg C * ha ⁻¹	m, s
^[35] Carbon storage: Carbon stored in aboveground biomass, belowground biomass, and soils; calculated by combining the InVEST model with wood production figures.	Mg * ha ⁻¹	<u>ک</u> ِ
^[36] Carbon stock: sum of above and below ground crop and tree biomass and soil organic carbon (SOC)	t C * ha ⁻¹	٩٢
^[21] Carbon stocks in soil and vegetation. Based on land use by assigning a region-specific, age-specific biomass carbon stock to the land use types "forest" and "(semi-)natural vegetation"	Not provided	<u>م</u>
^[40] Carbon stored in soil and biomass. Values were normalized [0-1] using benchmark values where available and observed values otherwise.	t C * ha ⁻¹	\otimes
^[46] Carbon stock in living biomass, deadwood, litter, and soils	t C * ha ⁻¹	<u>í</u>
^[47] Annual carbon stock: above and below ground biomass, soil organic carbon	t C * ha ⁻¹	<u>ح</u>
^[45] Carbon stored in aboveground biomass, belowground biomass, soil and dead organic matter (calculated with InVEST's Carbon Storage and Sequestration model). Values for all pools per land-use class were taken from Japans National Greenhouse Gas Inventory Report.	t * ha ⁻¹ * grid cell ⁻¹	<u>بر</u>
^[49] Total carbon stock for CORINE land cover classes, calculated as the sum of aboveground biomass, belowground biomass, litter and soil organic carbon	t C * ha ⁻¹	() () () () () () () () () () () () () (

^[27] Total carbon stored in landscape, calculated with InVEST	Mg	
model		
^[12] Carbon storage capacity	t C * ha⁻¹	٦
^[17] Carbon flow change: Carbon stock in vegetation (above- and belowground) + soil organic carbon stock (1 m). Values are compared to values for a reference situation.	t C * ha ⁻¹	ு _, வீ
^[10] Greenhouse gas emissions	1000 t CO2eq.	٩
^[19] Greenhouse gas balance of entire agricultural production system, including emissions from soils and fabrication of fertilizers and machinery	CO2 eq. * ha ⁻¹ * yr ⁻¹	, ⁽¹⁾
^[8] Climate change mitigation: Annual carbon sequestration and GHG emissions, using the methodology for the LULUCF sector in Finland's National Inventory of greenhouse gases	CO2 equ. * km ⁻²	P.
^[49] Annual Gross Primary Production, based on "Moderate Resolution Imaging Spectroradiometer (MODIS) 17" satellite datasets	t C * ha ⁻¹ * yr ⁻¹	(), () , (), (
^[49] Annual total Net Primary Production, based on "Moderate Resolution Imaging Spectroradiometer (MODIS) 17" satellite datasets	t C * ha ⁻¹ * yr ⁻¹	🛄 , 🔄 , 🞜
^[18] Carbon capture: NPP × $(1-VC_{NNP})$ × $(1-Ow)$; where NPP: Net Primary Production calculated from NDVI-values and expressed on a relative scale set to $(0 - 1000)$, VC _{NPP} : coefficient of variation of NPP $(0 - 1)$, Ow: water bodies occupancy percentage and flat floodplain area $(0 - 1)$. Ow is used to reflect that water cover is negatively correlated with plant cover and therefore by proxy with carbon capture	-	<u>ح</u>
^[50] Carbon sequestration and oxygen production: net primary productivity	t C * area ⁻¹ * yr ⁻¹	<u>T</u>
^[51] Climate regulation: annual net ecosystem exchange (NEE) of carbon	Mg C * ha ⁻¹	٩
^[52] Net ecosystem productivity	t C * ha ⁻¹ * yr ⁻¹	ت
^[48] Carbon sequestration: net primary productivity (NPP) using CASA (Carnegie-Ames-Stanford Approach) ecosystem model	gC * ha ⁻¹	<u>لگ</u>
^[8] Airborne nutrient input: Exceedance of empirical critical loads of nitrogen in Natura 2000 sites	mg N * m ⁻²	₽, <u>í</u>
 [13] "Emergy" of O₂ release by crops (derived from yield and a dollar price for O₂) and "emergy" of CO₂ absorption soils (based on organic matter accumulation) 	solar equivalent Joules	áÓ
 [20] Index based on: a) Carbon storage: aboveground carbon in living biomass and soil carbon in the surface layer (0–20 cm) [tons C/ha] b) Greenhouse gas emissions: Emissions of CO₂, CH₄, and N₂O measured at monthly intervals [CO2 equ. flux] Both a and b were scaled to a range of 0.1-1 (whereby 0.1 denotes the highest GHG emissions) and averaged. [20] Bio-indicator: Presence of specific ant species is used as an 	- low-medium-	B
indicator for high, medium or low provision of this ES. Suitable	high	<u>I</u>

indicator species must first be identified by a correlation between the presence of species and ES provision.		
^[28] Global climate regulation: values for ecosystem service supply based on land cover classes. The matrix defined by Burkhard et al., 2012 (DOI:10.1016/j.ecolind.2011.06.019) was adapted and used in this study.	Index 0-5	<u>ح</u>
^[49] Global climate regulation service, expert-based index values for CORINE land cover classes published by Burkhard et al. (2014, DOI: 10.3097/LO.201434).	Index 0-5	, F
^[1] NO ₂ dry deposition velocity	mm * s ⁻¹ * ha ⁻¹	áÍ, 😰

Table 4: National Scale

Indicator	Unit	Indicator values from
[2] GHG emissions: methane (CH ₄) from livestock (both through the production of manure and enteric fermentation); nitrous oxide (N ₂ O) from the application of inorganic fertilizers; and carbon dioxide (CO ₂) associated with changes in carbon stocks in above and below ground biomass (making allowance for soil type) and from the burning of fossil fuels to power agricultural machinery and production of fertilizers and pesticides	CO ₂ equ. * area ⁻ ¹ * yr ⁻¹	<u>ح</u> ح
^[2] GHG emissions: as above, valuation based on UK official non traded carbon value	Money * area ⁻¹ * yr ⁻¹	<u>ل</u> ل
^[11] GHG emissions from agriculture	t CO ₂ eq.	<u>لل</u>
^[21] Carbon sequestration. Based on land use by assigning a country-specific, land use type specific emission factor to each land use type. The emission factor also considers forest age and soil carbon stock.	Not provided	<u>م</u> ل ا
^[22] Carbon sequestration by farm afforestation	t CO ₂ eq. * ha ⁻¹ * yr ⁻¹	لگ ر
^[39] Carbon sequestered by permanent crops and grassland	Not specified	\otimes
^[7] Carbon stored in vegetation and soils	kg C * m ⁻²	
^[21] Carbon stocks in soil and vegetation. Based on land use by assigning a region-specific, age-specific biomass carbon stock to the land use types "forest" and "(semi-)natural vegetation"	Not provided	<u>r</u>
^[6] Global climate: Expert assessment for each land use class based on the indicators: CO ₂ , CH ₄ , N ₂ O, NO, and soot emissions	very negative (-3) to very positive (+3)	₽

^[6] Air quality: Expert assessment for each land use class based on the indicators: nitrous oxide, ammonia, and soot emissions; trees	very negative (-3) to very positive (+3)	*
--	--	----------

Table 5: Multinational Scale

Indicator	Unit	Indicator values from
^[16] Carbon sequestration: Amount of carbon that is sequestered from land use, land use change and forestry	C * km ⁻² * yr ⁻¹	ر ۳
^[32] Global climate regulation: values for Corine land cover classes, based on values published by Burkhard et al. (2009; DOI: 10.3097/LO.200915) and modified for the context of riparian zones.	Index 0-5	2

References

No.	Citation
1	Baro F, Gomez-Baggethun E, Haase D (2017) Ecosystem service bundles along the urban-rural gradient: Insights for landscape planning and management. Ecosystem Services 24: 147-159.
2	Bateman IJ, Harwood AR, Abson DJ, Andrews B, Crowe A, Dugdale S, Fezzi C, Foden J, Hadley D, Haines-Young R, Hulme M, Kontoleon A, Munday P, Pascual U, Paterson J, Perino G, Sen A, Siriwardena G, Termansen M (2014) Economic Analysis for the UK National Ecosystem Assessment: Synthesis and Scenario Valuation of Changes in Ecosystem Services. Environmental & Resource Economics 57(2): 273-297. DOI: 10.1007/s10640-013-9662-y
3	Felipe-Lucia MR, Comin FA (2015) Ecosystem services-biodiversity relationships depend on land use type in floodplain agroecosystems. Land Use Policy 46: 201-210. DOI: 10.1016/j.landusepol.2015.02.003
4*	Fürst C, Frank S, Witt A, Koschke L, Makeschin F (2013) Assessment of the effects of forest land use strategies on the provision of ecosystem services at regional scale. Journal of Environmental Management 127: S96-S116. DOI: 10.1016/j.jenvman.2012.09.020
5	Gret-Regamey A, Weibel B, Bagstad KJ, Ferrari M, Geneletti D, Klug H, Schirpke U, Tappeiner U (2014) On the Effects of Scale for Ecosystem Services Mapping. Plos One 9(12): e112601. DOI: 10.1371/journal.pone.0112601
6	Helfenstein J, Kienast F (2014) Ecosystem service state and trends at the regional to national level: A rapid assessment. Ecological Indicators 36: 11-18. DOI: 10.1016/j.ecolind.2013.06.031
7	Holland RA, Eigenbrod F, Armsworth PR, Anderson BJ, Thomas CD, Heinemeyer A, Gillings S, Roy DB, Gaston KJ (2011) Spatial covariation between freshwater and terrestrial ecosystem services. Ecological Applications 21(6): 2034-2048. DOI: 10.1890/09-2195.1
8	Holmberg M, Akujarvi A, Anttila S, Arvola L, Bergstrom I, Bottcher K, Feng XM, Forsius M, Huttunen I, Huttunen M, Laine Y, Lehtonen H, Liski J, Mononen L, Rankinen K, Repo A, Piirainen V, Vanhala P, Vihervaara P (2015) ESLab application to a boreal watershed in southern Finland: preparing for a virtual research environment of ecosystem services.
9	Hou Y, Zhou SD, Burkharda B, Muller F (2014) Socioeconomic influences on biodiversity, ecosystem services and human well-being: A quantitative application of the DPSIR model in Jiangsu, China. Science of the Total Environment 490: 1012-1028. DOI: 10.1016/j.scitotenv.2014.05.071
10	Huber R, Lehmann B (2010) Economies of Scope in the Agricultural Provision of Ecosystem Services: An Application to a High Cost Production Region. German Journal of Agricultural Economics 59(2): 91-105.
11	Kirchner M, Schmidt J, Kindermann G, Kulmer V, Mitter H, Prettenthaler F, Rudisser J, Schauppenlehner T, Schonhart M, Strauss F, Tappeiner U, Tasser E, Schmid E (2015) Ecosystem services and economic development in Austrian agricultural landscapes - The impact of policy and climate change scenarios on trade-offs and synergies. Ecological Economics 109: 161-174. DOI: 10.1016/j.ecolecon.2014.11.005
12	Liu S, Crossman ND, Nolan M, Ghirmay H (2013) Bringing ecosystem services into integrated water resources management. Journal of Environmental Management 129: 92-102. DOI: 10.1016/j.jenvman.2013.06.047
13	Ma FJ, Eneji AE, Liu JT (2014) Understanding Relationships among Agro-Ecosystem Services Based on Emergy Analysis in Luancheng County, North China. Sustainability 6(12): 8700-8719. DOI: 10.3390/su6128700
14	Marichal R, Grimaldi M, Feijoo AM, Oszwaldd J, Praxedes C, Cobo DHR, Hurtado MD, Desjardins T, da Silva ML, Costag LGD, Miranda IS, Oliveira MND, Brown GG, Tselouiko S,

No.	Citation
	Martins MB, Decaens T, Velasquez E, Lavelle P (2014) Soil macroinvertebrate communities
	and ecosystem services in deforested landscapes of Amazonia. Applied Soil Ecology 83: 177-
	185. DOI: 10.1016/j.apsoil.2014.05.006
15	Marks E, Aflakpui GKS, Nkem J, Poch RM, Khouma M, Kokou K, Sagoe R, Sebastia MT (2009)
	Conservation of soil organic carbon, biodiversity and the provision of other ecosystem services
	along climatic gradients in West Africa. Biogeosciences 6(8): 1825-1838. DOI: 10.5194/bg-6-
	1825-2009
16	Mouchet MA, Paracchini ML, Schulp CJE, Sturck J, Verkerk PJ, Verburg PH, Lavorel S (2017)
	Bundles of ecosystem (dis)services and multifunctionality across European landscapes.
	Ecological Indicators 73: 23-28. DOI: 10.1016/j.ecolind.2016.09.026
17	Nordborg M, Sasu-Boakye Y, Cederberg C, Berndes G (2017) Challenges in developing
	regionalized characterization factors in land use impact assessment: impacts on ecosystem
	services in case studies of animal protein production in Sweden. International Journal of Life
	Cycle Assessment 22(3): 328-345. DOI: 10.1007/s11367-016-1158-x
18	Barral MP, Oscar MN (2012) Land-use planning based on ecosystem service assessment: A
	case study in the Southeast Pampas of Argentina. Agriculture Ecosystems & Environment 154:
	34-43. DOI: 10.1016/j.agee.2011.07.010
19	Posthumus H, Rouquette JR, Morris J, Cowing DJG, Hess TM (2010) A framework for the
	assessment of ecosystem goods and services; a case study on lowland floodplains in England.
20	Ecological Economics 69(7): 1510-1523. DOI: 10.1016/j.ecolecon.2010.02.011
20	Sanabria C, Lavelle P, Fonte SJ (2014) Ants as indicators of soil-based ecosystem services in
	agroecosystems of the Colombian Lianos. Applied Soil Ecology 84: 24-30. DOI:
21	10.1016/J.apson.2014.07.001
21	Schulp CJE, Van Teenelen AJA, Tucker G, Verburg PH (2016) A quantitative assessment of policy options for no not loss of biodiversity and ecosystem services in the European Union
	Land Lise Policy 57: 151-162, DOI: 10.1016/i landusenol.2016.05.018
22	Schulte RPO Creamer RE Donnellan T. Farrelly N. Fealy R. O'Donoghue C. O'HHallachain D.
22	(2014) Eunctional land management: A framework for managing soil-based ecosystem
	services for the sustainable intensification of agriculture. Environmental Science & Policy 38:
	45-58. DOI: 10.1016/i.envsci.2013.10.002
23	Syswerda SP. Robertson GP (2014) Ecosystem services along a management gradient in
	Michigan (USA) cropping systems. Agriculture Ecosystems & Environment 189: 28-35. DOI:
	10.1016/j.agee.2014.03.006
24*	Tsonkova P, Bohm C, Quinkenstein A, Freese D (2015) Application of partial order ranking to
	identify enhancement potentials for the provision of selected ecosystem services by different
	land use strategies. Agricultural Systems 135: 112-121. DOI: 10.1016/j.agsy.2015.01.002
25	Tsonkova P, Quinkenstein A, Bohm C, Freese D, Schaller E (2014) Ecosystem services
	assessment tool for agroforestry (ESAT-A): An approach to assess selected ecosystem services
	provided by alley cropping systems. Ecological Indicators 45: 285-299. DOI:
	10.1016/j.ecolind.2014.04.024
26	Vigl LE, Tasser E, Schirpke U, Tappeiner U (2017) Using land use/land cover trajectories to
	uncover ecosystem service patterns across the Alps. Regional Environmental Change 17(8):
	2237-2250. DOI: 10.1007/s10113-017-1132-6
27	Zarandian A, Baral H, Stork NE, Ling MA, Yavari AR, Jafari HR, Amirnejad H (2017) Modeling of
	ecosystem services informs spatial planning in lands adjacent to the Sarvelat and Javaherdasht
	protected area in northern Iran. Land Use Policy 61: 487-500. DOI:
	10.1016/j.landusepol.2016.12.003

No.	Citation
28*	Zhang ZM, Gao JF, Fan XY, Lan Y, Zhao MS (2017) Response of ecosystem services to
	socioeconomic development in the Yangtze River Basin, China. Ecological Indicators 72: 481-
	493. DOI: 10.1016/j.ecolind.2016.08.035
29*	Andrea F, Bini C, Amaducci S (2017) Soil and ecosystem services: Current knowledge and
	evidences from Italian case studies. Applied Soil Ecology 123: 693-698. DOI:
	10.1016/j.apsoil.2017.06.031
31	Bastian O, Lupp G, Syrbe RU, Steinháußer R (2013) Ecosystem services and energy crops -
	Spatial differentiation of risks. Ekologia Bratislava 32(1): 13-29. DOI: 10.2478/eko-2013-0002
32	Clerici N, Paracchini ML, Maes J (2014) Land-cover change dynamics and insights into
	ecosystem services in European stream riparian zones. Ecohydrology and Hydrobiology 14(2):
	107-120. DOI: 10.1016/j.ecohyd.2014.01.002
33	Demestihas C, Plénet D, Génard M, Raynal C, Lescourret F (2017) Ecosystem services in
	orchards. A review. Agronomy for Sustainable Development 37(2): 12. DOI: 10.1007/s13593-
	017-0422-1
34	Fleming WM, Rivera JA, Miller A, Piccarello M (2014) Ecosystem services of traditional
	irrigation systems in northern New Mexico, USA. International Journal of Biodiversity Science,
	Ecosystem Services and Management 10(4): 343-350. DOI: 10.1080/21513732.2014.977953
35	Früh-Müller A, Hotes S, Breuer L, Wolters V, Koellner T (2016) Regional patterns of ecosystem
26	services in cultural landscapes. Land 5(2): 17. DOI: 10.3390/land5020017
36	Kay S, Crous-Duran J, Ferreiro-Dominguez N, Garcia de Jalon S, Graves A, Moreno G,
	Mosquera-Losada MR, Palma JHN, Roces-Diaz JV, Santiago-Freijanes JJ, Szerencsits E, Weibel
	R, Herzog F (2018) Spatial similarities between European agrotorestry systems and ecosystem
	services at the ianuscape scale. Agroiorestry systems 92(4): 1075-1089. DOI: 10.1007/S10457-
37	Kearney SP. Fonte SI. García E. Siles P. Chan KMA. Smukler SM (2019) Evaluating ecosystem
57	service trade-offs and synergies from slash-and-mulch agroforestry systems in El Salvador
	Ecological Indicators 105: 264-278, DOI: 10.1016/i ecolind.2017.08.032
38	Lavelle P. Rodríguez N. Arguello O. Bernal J. Botero C. Chaparro P. Gómez Y. Gutiérrez A.
	Hurtado MDP, Loaiza S, Pullido SX, Rodríguez E, Sanabria C, Velásquez E, Fonte SJ (2014) Soil
	ecosystem services and land use in the rapidly changing orinoco river basin of colombia.
	Agriculture, Ecosystems and Environment 185: 106-117. DOI: 10.1016/j.agee.2013.12.020
39	Maes J, Liquete C, Teller A, Erhard M, Paracchini ML, Barredo JI, Grizzetti B, Cardoso A, Somma
	F, Petersen JE, Meiner A, Gelabert ER, Zal N, Kristensen P, Bastrup-Birk A, Biala K, Piroddi C,
	Egoh B, Degeorges P, Fiorina C, Santos-Martín F, Naruševičius V, Verboven J, Pereira HM,
	Bengtsson J, Gocheva K, Marta-Pedroso C, Snäll T, Estreguil C, San-Miguel-Ayanz J, Pérez-Soba
	M, Grêt-Regamey A, Lillebø AI, Malak DA, Condé S, Moen J, Czúcz B, Drakou EG, Zulian G,
	Lavalle C (2016) An indicator framework for assessing ecosystem services in support of the EU
	Biodiversity Strategy to 2020. Ecosystem Services 17: 14-23. DOI:
	10.1016/j.ecoser.2015.10.023
40	Rodríguez-Loinaz G, Alday JG, Onaindia M (2014) Multiple ecosystem services landscape
	index: A tool for multifunctional landscapes conservation. Journal of Environmental
	Management 147: 152-163. DOI: 10.1016/j.jenvman.2014.09.001
41	Rutgers M, van Wijnen HJ, Schouten AJ, Mulder C, Kuiten AMP, Brussaard L, Breure AM (2012)
	A method to assess ecosystem services developed from soil attributes with stakeholders and
	data of four arable farms. Science of the Total Environment 415: 39-48. DOI:
42	10.1016/J.Scitotenv.2011.04.041
42	Daryanto S, Fu B, Zhao W (2019) Evaluating the use of fire to control shrub encroachment in
	giobal drylands: A synthesis based on ecosystem service perspective. Science of the Total
	Environment 648: 285-292. DOI: 10.1016/J.Scitotenv.2018.08.140

No.	Citation
43	Daryanto S, Fu BJ, Wang LX, Jacinthe PA, Zhao WW (2018) Quantitative synthesis on the
	ecosystem services of cover crops. Earth-Science Reviews 185: 357-373. DOI:
	10.1016/j.earscirev.2018.06.013
44	Demestihas C, Plénet D, Génard M, Garcia de Cortazar-Atauri I, Launay M, Ripoche D,
	Beaudoin N, Simon S, Charreyron M, Raynal C, Lescourret F (2018) Analyzing ecosystem
	services in apple orchards using the STICS model. European Journal of Agronomy 94: 108-119.
	DOI: 10.1016/j.eja.2018.01.009
45	Hashimoto S, DasGupta R, Kabaya K, Matsui T, Haga C, Saito O, Takeuchi K (2018) Scenario
	analysis of land-use and ecosystem services of social-ecological landscapes: implications of
	alternative development pathways under declining population in the Noto Peninsula, Japan.
	Sustainability Science 14: 53-75. DOI: 10.1007/s11625-018-0626-6
46	Jaligot R, Chenal J, Bosch M, Hasler S (2019) Historical dynamics of ecosystem services and
	land management policies in Switzerland. Ecological Indicators 101: 81-90. DOI:
	10.1016/j.ecolind.2019.01.007
47	Kay S, Crous-Duran J, García de Jalón S, Graves A, Palma JHN, Roces-Díaz JV, Szerencsits E,
	Weibel R, Herzog F (2018) Landscape-scale modelling of agroforestry ecosystems services in
	Swiss orchards: a methodological approach. Landscape Ecology 33(9): 1633-1644. DOI:
	10.1007/s10980-018-0691-3
48	Li T, Lü Y, Fu B, Hu W, Comber AJ (2019) Bundling ecosystem services for detecting their
	interactions driven by large-scale vegetation restoration: enhanced services while depressed
	synergies. Ecological Indicators 99: 332-342. DOI: 10.1016/j.ecolind.2018.12.041
49	Ma LW, Bicking S, Muller F (2019) Mapping and comparing ecosystem service indicators of
	global climate regulation in Schleswig-Holstein, Northern Germany. Science of the Total
	Environment 648: 1582-1597. DOI: 10.1016/j.scitotenv.2018.08.274
50	Peng J, Tian L, Liu Y, Zhao M, Hu Y, Wu J (2017) Ecosystem services response to urbanization in
	metropolitan areas: Thresholds identification. Science of the Total Environment 607-608: 706-
- 4	/14. DOI: 10.1016/J.scitotenv.2017.06.218
51	Qiu JX, Carpenter SR, Booth EG, Motew M, Zipper SC, Kucharik CJ, Loheide SP, Turner AG
	(2018) Understanding relationships among ecosystem services across spatial scales and over
50	time. Environmental Research Letters 13(5): 054020. DOI: 10.1088/1/48-9326/aabb8/
52	Santos-Martin F, Zorrilla-Miras P, Palomo-Ruiz I, Montes C, Benayas J, Maes J (2019)
	Protecting nature is necessary but not sufficient for conserving ecosystem services: A
	comprehensive assessment along a gradient of land-use intensity in Spain. Ecosystem Services
Г) *	35: 43-51. DUI: 10.1016/J.ecoser.2018.11.006
53*	Solen LC, Nicolas J, de Sartre Xavier A, Thibaud D, Simon D, Michel G, Johan O (2018) Impacts
	of Agricultural Practices and Individual Life Characteristics on Ecosystem Services: A Case
	Study on Family Famers in the context of an Amazonian Pioneer Front. Environmental
Г / *	Management 61(5): 772-785. DOI: 10.1007/S00207-018-1004-y
54.	Tang LL, Hayashi K, Konyama K, Leon A (2018) Reconcining Life Cycle Environmental impacts
	10(2): 620 DOI: 10.2200/cu10020620
55	10(3), 030, DOI, 10.3330/SU10030030
22	vali vooren L, Reubens B, Broekx S, Reneur D, Verneyen R (2018) Assessing the impact of
	grassianu management extensitication in temperate areas on multiple ecosystem services and biodiversity. Agriculture, Ecosystems and Environment 267: 201–212, DOI:
	biodiversity. Agriculture, Ecosystems and Environment 267: 201-212. DOI:
	10.1016/J.agee.2018.08.016