Capability of the TrueColor Sensor Array for Determining the Nitrogen Supply in Winter Barley (Hordeum vulgare L.) (2022.0)
Christ A., Schmittmann O., Schulze Lammers P.
Sensors, 22 (16), 6032
doi:10.3390/s22166032
Abstract
In agriculture, efforts are being made to reduce pesticides and fertilizers because of the possible negative environmental impacts, high costs, political requirements, and declining social acceptance. With precision farming, significant savings can be achieved by the site-specific application of fertilizers. In contrast to currently available single sensors and camera-based systems, arrays or line sensors provide a suitable spatial resolution without requiring complex signal processing and promise significant potential regarding price and precision. Such systems comprise a cost-effective and compact unit that can be extended to any working width by cascading into arrays. In this study, experiments were performed to evaluate the applicability of a TrueColor sensor array in monitoring the nitrogen supply of winter barley during its growth. This sensor is based on recording the reflectance values in various channels of the CIELab color space: luminosity, green–red, and blue–yellow. The unique selling point of this sensor is the detection of luminosity because only the CIELab color space provides this opportunity. Strong correlations were found between the different reflection channels and the nitrogen level (R² = 0.959), plant coverage (R² = 0.907), and fresh mass yield (R² = 0.866). The fast signal processing allows this sensor to meet stringent demands for the operating speed, spatial resolution, and price structure.